
HP Service Manager
Software Version: 9.40 

For the supported Windows® and Linux® operating systems

Web Services Guide (Codeless Mode)

Document Release Date: December 2014
Software Release Date: December 2014



Legal Notices

Warranty
The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained
herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Copyright Notice
© 1994-2014 Hewlett-Packard Development Company, L.P.

Trademark Notices
Adobe® is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

UNIX® is a registered trademark of The Open Group.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

For a complete list of open source and third party acknowledgements, visit the HP Software Support Online web site and search for the product
manual called HP Service Manager Open Source and Third Party License Agreements.

Documentation Updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:https://softwaresupport.hp.com

This site requires that you register for an HP Passport and sign in. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HP sales representative for
details.

Support
Visit the HP Software Support Online website at:https://softwaresupport.hp.com

This website provides contact information and details about the products, services, and support that HP Software offers.

Web Services Guide

HP Service Manager (9.40 Codeless) Page 2 of 242



HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to access interactive technical support tools
needed to manage your business. As a valued support customer, you can benefit by using the support website to:

l Search for knowledge documents of interest
l Submit and track support cases and enhancement requests
l Download software patches
l Manage support contracts
l Look up HP support contacts
l Review information about available services
l Enter into discussions with other software customers
l Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a support contract. To register for an HP
Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

HP Software Solutions Now accesses the HPSW Solution and Integration Portal website. This site enables you to explore HP Product Solutions
to meet your business needs, includes a full list of Integrations between HP Products, as well as a listing of ITIL Processes. The URL for this website is

http://h20230.www2.hp.com/sc/solutions/index.jsp

About this PDF Version of Online Help
This document is a PDF version of the online help. This PDF file is provided so you can easily print multiple topics from the help information or read
the online help in PDF format. Because this content was originally created to be viewed as online help in a web browser, some topics may not be
formatted properly. Some interactive topics may not be present in this PDF version. Those topics can be successfully printed from within the online
help.

Web Services Guide

HP Service Manager (9.40 Codeless) Page 3 of 242



Contents

Service Manager Web Services 10

Introduction to the Web Service guide 10

What is a Web Service? 10

Understanding the Service Manager Web Services 11

Web Services basics 12

Adding or changing Web Services 12

Introduction to Web Services in Service Manager 13

Web Services and Service Manager 14

Web Services naming conventions for SOAP 16

Web Services security considerations 16

Valid URLs for Service Manager 17

Service Manager Web Services URLs 18

Configure the Web Service field definitions 18

Allowed Actions tab field definitions 19

Expressions tab field definitions 20

Fields tab definitions 20

RESTful tab field definitions 21

Publishing Service Manager data using WS API 23

Things to consider prior to publishing data 23

Publishing Service Manager applications as Web Services 23

When to use Web Services 24

Can I use the out-of-box Web Services? 24

What items do I need to expose? 25

Publish a Document Engine display action in the Web Services API 25

Publish a Service Manager field in the Web Services API 27

What data types should I use for SOAP? 28

What methods do I need? 31

Managing records with Web Services requests 31

Create only 31

Update only 32

Merge 32

Web Services Guide

HP Service Manager (9.40 Codeless) Page 4 of 242



Are there any security considerations? 32

What are released Web Services? 32

Enable SSL encryption for published Web Services 33

List: Web Services available in the Service Manager Web Services API 34

Field names in the extaccess record 36

Create dedicated Web Services listeners 38

Data conversion between Service Manager and SOAP Web Services 40

Example: Publishing the Terminate Change functionality via Web Services 41

Create a display option 41

Create a new process 42

Set up a State record 44

Set up an extaccess record 44

Execute a request via SOAP Web Services 46

Response to a request via SOAP Web Services 52

Execute a request via RESTful Web Services 55

Response to a request via RESTful Web Services 55

Publish a table as a Web service 57

Expose a table with more than one Web service 60

Remove a Document Engine display action from a Web service 61

Remove a Service Manager field from a Web service 62

Sample client for SOAP Web Services SM7 URL 63

Command line arguments for the Axis2 sample application 65

Add an external access action to the Web Services 67

SOAP API 70

Web Services Description Language (WSDL) 70

Basic operations in WSDL files 70

Service Manager WSDL files 72

Types of Web Services in Service Manager 73

WSDL document structure 74

XML header 75

Namespace definitions 75

Operation section 76

Messages section 76

Web Services Guide

HP Service Manager (9.40 Codeless) Page 5 of 242



Types section 76

Nillable attribute 79

Port type 79

Binding section 79

Service section 80

Port section 81

Change example to use the cookie 81

Verify the WSDL to JS output 83

Example using Keep-Alive with .Net Web Services Studio 84

First execution of .Net Web Services Studio 85

Second execution of .Net Web Services Studio 87

Consuming a Service Manager Web Service 88

Dynamic and static Web Services clients 89

What happens if an exposed table is changed? 90

Updating Service Manager tables 90

Requirements for developing custom Web Services clients 91

Checklist: Creating a custom Web Services client 92

Technical support for custom Web Services clients 93

Sample Web Services client for sc62server PWS URL 94

Command line arguments for the .NET samples 97

Command line arguments for the Axis sample application 99

Configuration Management 99

Incident Management 99

Using query syntax 100

The request 101

The response 104

Retrieving data from Service Manager 106

Example: Retreiving data from Service Manager via a Web service 108

The request 108

The response 112

Retrieve data from Service Manager using Pagination 114

Example: Use Web Service with pagination to retrieve data from Service Manager 115

Request with pagination 115

Response with pagination 118

Next pagination request 120

Next pagination response 123

Retrieve data from Service Manager for Optimistic Locking 124

Request with updatecounter 124

Web Services Guide

HP Service Manager (9.40 Codeless) Page 6 of 242



Response with updatecounter 125

Web Services examples in the RUN directory 126

Example: Retrieving Service Manager Release Management changes into a text file
using Connect-It 127

Example: Getting change information from another Service Manager system 131

Example to close an existing incident record 140

Special considerations for using Keep-Alive with Service Manager 140

Keep-Alive example for Service Manager 141

Use SSL to consume Service Manager Web Services 143

Attachment handling 143

Service Manager allows requests with no href or content-id 144

Sample script to send a record with attachments within Service Manager 146

Consume an external Web Service 149

Use the WSDL2JS utility 150

Best practices for writing a JavaScript to consume a Web service 151

Date/Time handling 152

Example: Interface to another system 153

Generated JavaScript interfaces 153

Create a request for a new project 154

The structure of the request 155

Request object 157

Simple fields 158

Check the xs_string() function 158

Check expected parameters in invoke() function 159

Check the syntax for the Response function 159

Use getValue 160

Write the invoking JavaScript code 160

Determine the structure of the request and response 164

PPM request 177

PPM response 179

Web Services with a proxy server 180

Connecting to a secure Web service 181

Use SSL connections to connect to an external Web service 182

Web Services connections through a firewall 185

RESTful API 187

Service Document 187

Web Services Guide

HP Service Manager (9.40 Codeless) Page 7 of 242



Consuming Service Manager RESTful API 188

RESTful Syntax 188

Resource Types 189

RESTful Authentication 192

RESTful Commands 192

RESTful Queries 194

Resource Representations 196

Media Types for an Individual Resource 196

Resource Collection Media Types 197

Media Types for an individual attachment 197

Resource Collection Media Types 197

Enable a Resource for REST 198

RESTful Capability Word 199

HTTP Header 200

HTTP Response Codes 201

See Also 201

OOB Resource Reference Example 201

Web Service: Incident 202

Troubleshooting 206

Understanding the return codes provided by Web Services 206

Example of a failure return code and message 209

Detailed return codes from Document Engine 210

Troubleshooting SOAP API 211

Debugging 211

The debughttp parameter 211

Interpreting the http.log 213

RTM:3 and debugdbquery:999 215

The allowwsdlretrieval parameter 215

Error messages 215

Failure of the WSDL2JS utility 218

Testing your WSDL with a SOAP UI 218

Running Web Services on a dedicated port (servlet) 219

Troubleshooting a Web service that is behind a closed firewall 220

Step 1: Test the WSDL2JS 220

Step 2: Test the request 222

Step 3: Test the response 224

Web Services Guide

HP Service Manager (9.40 Codeless) Page 8 of 242



Max sessions exceeded in Web Services 227

Troubleshooting HTTP socket connections 228

Redirected ports 228

TCP ECONNRESET messages 228

Debugging SOAP errors 229

SOAP messages: Debugging HTTP traffic problems 230

SOAP messages: Debugging problems with RAD applications 231

Web Services client unable to connect 232

Calling external web services with SSL fails after JRE 7 upgrade 233

Troubleshooting RESTful API 235

Debugging 235

The debugrest parameter 236

The dao_threadsperprocess parameter 236

The dao_sessiontimeout parameter 236

Syntax for entity references in xml 237

Definitions, acronyms, and abbreviations 238

Web Services resources 239

Send Documentation Feedback 241

Web Services Guide

HP Service Manager (9.40 Codeless) Page 9 of 242



Service Manager Web Services
Service Manager Web Services provide the ability to communicate and integrate with

applications in an open and efficient manner. Web Services provide the ability to use a

third-party application inside Service Manager, manipulate Service Manager data inside

your custom application, or transfer data among separate Service Manager systems.

Introduction to the Web Service guide
This document provides guidance for users who wish to publish or consume Web

Services using Service Manager. It includes examples that can be used as templates.

Web Services and their clients can be written in any programming language and for any

platform. Service Manager Web Services ships with examples using both the Java™ and

Visual C++® programming languages.

What is a Web Service?
The formal definition (according to www.w3c.org) is that a Web service is a software

application identified by a Uniform Resource Identifier (URI), whose interfaces and

binding are capable of being defined, described, and discovered by XML artifacts and

supports direct interactions with other software applications using XML-based

messages via Internet-based protocols.

A Web service is a software system designed to support interoperable application to

application interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with Web Services in a

HP Service Manager (9.40 Codeless) Page 10 of 242



manner prescribed by its description using SOAP messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-related standards.

There are two major classes of Web Services:

l REST-compliant Web Services: The primary purpose of the service is to manipulate

XML representations of Web resources using a uniform set of "stateless" operations.

l Arbitrary Web Services: The service may expose an arbitrary set of operations.

Both these Web Services use URIs to identify resources and use Web protocols (such as

HTTP and SOAP) and XML data formats for messaging.

Understanding the Service Manager Web Services

Every Web service published by Service Manager is a document-literal service. The

documents which are used for the requests and replies are derived from the dbdict

definition of a single Service Manager file and published via the fields section of the

extaccess record.

Each field in the Service Manager data model must be understood in the context of the

business logic for the application that defines the data. Before approaching any Web

Services consumption project, it is important to understand the data model that is

implemented within the Service Manager instance you are targeting. Because Service

Manager allows you to add new fields, change the validation of fields or make fields

mandatory, every Service Manager implementation will have a slightly different data

model and business logic, and each difference has to be reflected in the published Web

Service to ensure successful processing.

Web service definitions are maintained in the Web Service Configuration Utility. In this

utility you can see how file names such as probsummary are aliased to Incident, how

fields within files can be exposed for purposes of Web Services; and how they are

aliased to more appropriate names. Finally, the Web Service Configuration Utility is

where XML schema data types such as dateTime can be applied to individual fields. The

Web Services Guide

Service Manager Web Services

HP Service Manager (9.40 Codeless) Page 11 of 242



default type is string, but Service Manager fields can be mapped to various XML schema

types if needed.

Web Services basics

The basic Web Services architecture includes the following:

l Publishing - Publishing a Web Service means enabling a Web Service user (consumer)

to locate the service description and instructing the consumer how they should

interact with the Web Service.

l Consuming (client) - A client is software that is able to use (consume) a Web Service.

A service consumer issues one or more queries to the directory to locate a service

and determine how to communicate with that service. 

l Service - A collection of EndPoints that provides the servicing of the consumers

request.

l EndPoint (port) - An EndPoint indicates a specific location for accessing a Web

Service using a specific protocol and data format.

Adding or changing Web Services

1. Modify an existing extaccess record if the Web Service connecting through it needs

to get additional information or add a new extaccess record if you want to expose a

table to a new Web Service and do not want to interfere with existing Web Service

applications.

Note: Writing expressions in extaccess: The extaccess tool uses the same file

variables as the Document Engine. For example, a file variable that holds the

Web Services Guide

Service Manager Web Services

HP Service Manager (9.40 Codeless) Page 12 of 242



current record is $L.file, and the copy of the record before modifications is

$L.file.save.

2. For SOAP, rebuild or build the Service Object by re-running WSDL2JS if Service

Manager is the consumer.

3. Modify the calling applications if actions, field names, or object name have changed,

and a calling application refers to them.

Introduction to Web Services in Service
Manager
The published out-of-box ITIL®-based processes for Web Services are:

l Service Desk

l Incident Management

l Problem Management

l Knowledge Management

l Configuration Management

l Change Management

l Service Catalog

l Service Level Management

l Request Fulfillment

Note: Table-based Web services are still available in Service Manager when needed.

Web Services Guide

Service Manager Web Services

HP Service Manager (9.40 Codeless) Page 13 of 242



Each Web Service application can have a “different view” of the defined services,

but the underneath logical flow is still controlled by same Service Manager

applications. To avoid validation failure, make sure all the required fields are

always exposed.

To publish a Service Manager Web Service, you create one extaccess record per

table that you want to publish in that service. Each Web Service application can have a

different view of the defined services but the underneath logical flow is still controlled

by same Service Manager applications. To avoid validation failure, make sure all the

required fields are always exposed on all extaccess records for the table. To add or

modify an extaccess record:

Click Tailoring > Web Services > Web Service Configuration.

For SOAP, you may need the allowwsdlretrieval parameter in the sm.ini to

be able to view Service Manager WSDL.

Caution: Changes to a specific extaccess record affect any client that is

currently consuming the Web Service created by that record. If you modify this

configuration, make sure to test all other applications that consume the same Web

Service and address possible issues immediately. To avoid issues stemming from

different applications using the same Web Service, create a unique extaccess

record for each Web Service application, so that each application has a unique Web

Service to consume. A single table can be represented in multiple extaccess

records.

Web Services and Service Manager

A Web Service enables one application to access the functionality of another application

using SOAP operations (XML-based transactions) or RESTful operations, regardless of

differences in their operating system platform, application language, or tool set. HP

Service Manager supports two types of Web Services features:

Web Services Guide

Service Manager Web Services

HP Service Manager (9.40 Codeless) Page 14 of 242



l Connecting to and consuming external Web Services

l Publishing Service Manager fields and methods as Web Services

For SOAP, the Service Manager server now offers out-of-box functionality to connect to

and consume external Web Services. When you connect to an external Web service,

Service Manager retrieves the Web Service Description Language (WSDL) for the

service. You can then write custom JavaScript to use JavaScript functions generated by

Web Services and send and receive messages to the remote Web Services. For

example, you might query external Web Services to:

l Validate an email address or a phone number when updating a contact record.

l Automatically fill in the time zone of a contact in a Service Desk interaction based

on the location given.

l Automatically perform a search for solutions using the brief description of the

Service Desk interaction.

The out-of-box Service Manager includes a bundle of published tables, fields, and

display actions collectively known as the Service Manager Web Services. The Service

Manager Web Services includes Web Services for all the applications and uses an ITIL-

compliant naming convention to refer to the Web Service object. The use of ITIL-

compliant service and object names allows Web Services developers to create custom

Web Services without needing to be familiar with the Service Manager database layer.

To consume Service Manager tables, fields, and display actions, you must grant an

operator the SOAP API or RESTful API capability word.

You can use the Service Manager Web Services to integrate applications and automate

transactions. For example, you might want to publish a Web Service that enables

another application or process to:

l Automatically open, update, escalate, resolve, or close Service Manager incidents.

l Automatically add or update a configuration item.

Web Services Guide

Service Manager Web Services

HP Service Manager (9.40 Codeless) Page 15 of 242



In addition to the tables, fields, and display actions available though the Service

Manager Web Services, you can customize the Web Services available from Service

Manager by adding, changing, or removing your own tables, fields, and display actions.

When you customize the Web Services, Service Manager creates a new version of the

Service Manager Web Services. Afterwards, any custom Web Services clients you create

access this new version of the Web Service.

Web Services naming conventions for SOAP

The request and response names use the literal strings of the Action Name and Object

Name defined in the extaccess record. The name of the Request and Response methods

within Service Manager’s Web Services are constructed by combining the Action Name

with the Object Name and Request or Response.

Note: These names are case sensitive.

For example, the method to add a new incident to the system is:

Action
Name

Object
Name

Request Response

Create Incident CreateIncidentRequest CreateIncidentResponse

If your Object Name for the Incident object starts with a lower case “i” (incident) the

request is CreateincidentRequest and the response is CreateincidentResponse.

Web Services security considerations

The Service Manager server requires that each Web Service request provide a valid

operator name and password combination. These must be supplied in a standard HTTP

Basic Authorization header. The Web Service toolkits universally support this

authentication mechanism. Use SSL if you are concerned about the possibility of

Web Services Guide

Service Manager Web Services

HP Service Manager (9.40 Codeless) Page 16 of 242



someone using a network monitoring tool to discover passwords. Basic Authorization by

itself does not encrypt the password; it simply encodes it using Base 64.

Note: Only ASCII operator names are supported in Service Manager Web Service

integrations. When Service Manager is handling an incoming Web Service request,

the authorization string is decoded by BASE64Decoder. Service Manager uses the

decoded string value to construct a UTF-8 string that is used in the RTE. However,

the authorization string is in the header and Service Manager does not know the

charset or encoding of the underling string value, which is BASE64 encoded.

Therefore, if the underlying string value is not UTF-8, Web Service clients will fail to

connect to Service Manager. In Service Manager, when fetching an operator from

the database, no matter what collation the database uses, the operator finally will

get a UTF-8 operator value. However, even if users put the same value in the

authorization header, the operator name may differ because of the

charset/encoding issue.

In addition to having a valid login, the operator must have the SOAP API or RESTful API

capability word to access the Web Services. If the Web Service request does not contain

valid authorization information, then the server sends a response message containing

“401 (Unauthorized).” If the request is valid, then the server sends a response

message containing the results of your Web Services operation. The response message

contains only the information the operator is allowed to see. The security settings of

the user's profile, Mandanten security settings, and conditions defined in the Document

Engine are maintained by all Web Services.

Valid URLs for Service Manager

The Service Manager publishes two different URLs for SOAP:

http://<server>:<port>/SM/7

This URL contains similar functionality as sc62server/PWS, except that it uses

MTOM attachments.

http://<server>:<port>/sc62server/PWS

Web Services Guide

Service Manager Web Services

HP Service Manager (9.40 Codeless) Page 17 of 242



This URL provides complete functionality and despite the name sc62server, it is a

fully implemented Service Manager7 Web Services interface using MIME attachments.

The Service Manager also publishes one URLs for REST:

http://<server>:<port>/SM/9/rest

Service Manager Web Services URLs

HP Service Manager support the Web Services at both URLs for SOAP API. If you already

use the SC62 server , continue to use it. If you are starting to create a new Web

service, use the SM/7 server. You can continue to use the methods, which are still

applicable other than the following.

l Any new objects added to Service Manager 9.40 Codeless, such as the new required

fields in Incident Management, will not be available to existing Web Services.

l If you have an SOA broker application, BPEL orchestration engine, or Web Services

middleware application cofigured between the deployed SOAP client application and

ServiceCenter or Service Manager application. If so, the orchestration scenario or

middleware can be modified to work as a mediator between the old and the new

version of the IncidentManagement WSDL.

l MIME – If you use the legacy Web Services URL, then the server uses MIME to encode

attachments.

l MTOM/XOP – If you use the Service Manager Web Services URL, then the server uses

MTOM/XOP to encode attachments.

HP Service Manager also supports one URL for RESTful API.

Configure the Web Service field definitions

Use the Web Service Configuration Utility to define the fields that will be passed from

HP Service Manager to the Web Service. The Service Manager fields are taken directly

Web Services Guide

Service Manager Web Services

HP Service Manager (9.40 Codeless) Page 18 of 242



from the database dictionary.

Field Description

Service
Name

The name of the Web Service you want to use to publish theService
Manager table. You can reuse the same Web Service name to publish
multiple tables. Since this name becomes part of a URL, the name must
consist of alphanumeric characters valid for URLs. The name cannot
consist of URL reserved characters such as spaces, slashes, or colons.

Released You should consider any web service with the Released option selected
as the supported version of the Web Service in Service Manager. While
it is possible to clear the Released option and edit or delete the Web
Service, HP recommends that you assign the service a different name
and work on that copy of the web service instead. When the Released
option is selected, the external access definition remains read-only.

Name The name of the Service Manager table that will be published as a Web
Service.

Deprecated Web Services marked as deprecated are not supported.

Object
Name

The name you want to use to identify the Service Manager table in the
Web service. Since this name becomes part of the WSDL, the name
must consist of alphanumeric characters valid for XML. The name
cannot consist of XML reserved characters such as brackets (<) and (>),
colons (:), or quotation marks (").

Allowed Actions tab field definitions

Use this tab to enter the HP Service Manager Document Engine display actions you

want to globally enable for this table.

Field Description

Allowed
Actions

Click to see the list of allowable display actions for the Service Manager
table you have selected for the Web Service.

Web Services Guide

Service Manager Web Services

HP Service Manager (9.40 Codeless) Page 19 of 242



Field Description

Action
Names

The name used to identify the display action in the Web service as an
operation. Since this name becomes part of the WSDL, the name must
consist of alphanumeric characters valid for XML. The name cannot consist
of XML reserved characters such as brackets (<) and (>), colons (:), or
quotation marks (").

Action
Type

The type for each of the Document Engine display actions that are defined
for this table. Click the drop-down icon to see a list of valid type values.

l Create only actions will only create new records.

l Update only actions will only update existing records.

l Merge actions will update the record if it exists and create it if it does
not exist.

l Application Pass Through actions will perform custom actions defined in
External Access Actions.

Custom
Action
To...

Create a custom action for the Service Manager table you have selected for
the Web Service.

Expressions tab field definitions

Use this tab to enter system language expressions that run before the display action

that runs as part of the Web Service.

Field Description

Expressions Call a custom action created in External Access Actions.

Fields tab definitions

Use this tab to set the fields, captions, and field types.

Web Services Guide

Service Manager Web Services

HP Service Manager (9.40 Codeless) Page 20 of 242



Field Description

Field The HP Service Manager field name that is published by the Web Services
Configuration Utility.

Caption The name that Service Manager displays for the associated Field in the Web
Service.

Type The data type that the Web Services API will convert field data to for Web
Services access.

RESTful tab field definitions

Use this tab to enter the RESTful API related configurations.

Field Description

RESTful
Enabled

If it is selected, RESTful API is available for this service. If it is not
selected, RESTful API is unavailable for this service.

Attachment
Enabled

If it is selected, attachment is supported by RESTFful API for this
service. If it is not selected, attachment is not supported by RESTful
API for this service.

Resource
Collection
Name

This is the name of the Resource Collection. For example, you may
specify the group of incidents from the probsummary table as
"incidents".

Resource
Name

This is the name of the individual Resource. For example, you may
specify that any individual incident from the probsummary table be
referred to as an "Incident".

Unique Keys This field specifies one or more fields that will function as a unique
identifier for a Resource from the Resource Collection. For example,
{ID} in single resource query URI,
http://<server>:<port>/SM/9/rest/incidents/{ID}

Max Records
Returned in
Query

This is the max number of records returned in every single query
when the number of records is huge. By default, the value is 1000.

Web Services Guide

Service Manager Web Services

HP Service Manager (9.40 Codeless) Page 21 of 242



Field Description

Query
Authorization

This is the query privilege for this service.

Resource
Collection
Action

This field represents the default action for resource collection.

Resource
Actions

This field specifies the action to take when an individual resource is
part of a POST, PUT, DELETE command. These actions are specified in
the Allowed Actions tab of the External Access Definition.

Web Services Guide

Service Manager Web Services

HP Service Manager (9.40 Codeless) Page 22 of 242



Publishing Service Manager data using
WS API
To publish Service Manager data via Web Services, use the Web Service Configuration

tool to expose files and methods to add, update, or delete Service Manager records. The

consumer of this data can be a custom C# or Java program or an interface program

such as Connect-It as well as another Service Manager system.

To expose a set of Service Manager tables as a Web Service, click Tailoring > Web

Services > External Access Actions and create or update the related extaccess record

for each of the tables.

Things to consider prior to publishing data
Before publishing Service Manager data via a Web Service, there are several things to

consider. When investigated thoroughly, each of the following items will serve to

improve the organization and performance of the Web Services.

Publishing Service Manager applications as Web

Services

You can publish HP Service Manager applications as Web Services and create new

integration points between the Service Manager server and external applications.

You can customize the Web Services that Service Manager publishes by adding or

removing tables, fields, and display options, from the list of objects available to the

Web Services. In addition, you can create alias names for each of these options that

only appear in the Web Services but HP recommends that you do not do this. You can

HP Service Manager (9.40 Codeless) Page 23 of 242



also specify the XML schema data type you want the Service Manager server to use

when publishing data to a SOAP Web service.

For your custom Web Services client to access Service Manager Web Services, it must

present a valid operator record name and password with each request. Furthermore,

the operator must have the SOAP API or RESTful API capability word as part of his or

her security profile.

When to use Web Services

Web Services enable user-driven integrations with any application that supports Web

Services.

l Web Services can be used for any table and external applications that support the

technology.

l Web Services can be used to view data from an external source or copy data from

one system to another.

Can I use the out-of-box Web Services?

The ITIL-standard Web Services provided with Service Manager should be used

whenever possible. They have been tested extensively and are well documented, which

makes them easier to use. If you are interested in using one of these Web Services, HP

recommends that do not modify the out-of-box extaccess records. Instead, always

create your own copy if you need to add actions or fields. If the changes are unique,

create a copy of the extaccess record(s) involved first and name the service differently;

for example, IncidentManagementForPortal rather than just IncidentManagement, and

make your changes against the new set of extaccess records.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 24 of 242



What items do I need to expose?

Only expose required fields and fields that are necessary for the actions exposed.

Expose only those actions that are required for the consumer to perform their duty. All

actions that are exposed need to be able to run in background without user interaction.

Though an entire table and even an entire system can be exposed via Web Services,

doing so would affect performance and confuse users. Only the data that is needed by a

client should be exposed. This prevents excess traffic and decreases the amount of

storage that your client may need to use.

Publish a Document Engine display action in the Web

Services API

You must have the SysAdmin capability words to use this procedure.

The Service Manager Web Services API allows you to publish any Document Engine

display action as part of a Web Service.

1. Log on to Service Manager as a System Administrator.

2. Click Tailoring > Web Services > Web Service Configuration. Service Manager

displays the External Access Definition form.

3. In the Name field, type the name of the Service Manager table or join file whose

display actions you want to publish.

4. Click Search. The External Access Definition record for the table opens.

5. Double-click the applicable object name entry. The External Access Definition form

opens.

6. Click an empty cell from the Allowed Actions array and select the Document Engine

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 25 of 242



display action you want to publish from the list.

Note: If a join file is chosen, the allowed actions for the join file are controlled

by the initialization expressions in the ext.init Process record (click

Tailoring > Document Engine > Processes).

Note: You must first have created the necessary Document Engine records,

states, objects, and display actions, for a custom display action to appear in

this list.

7. In the Action Names field next to the allowed action, type the name you want

Service Manager to display for the action in the Web Services API.

Note: The name you type for this field becomes the alias name for the display

action and becomes part of the Web Service WSDL. For example, if you type

Create for the add action of the Incident object, then the WSDL operation

becomes CreateIncident and the WSDL messages are CreateIncidentRequest

and CreateIncidentResponse.

Caution: Since this name becomes part of the WSDL, the name must consist of

alphanumeric characters valid for XML. The name cannot include XML-reserved

characters such as brackets (< & >), colons (:), or quotation marks (" & ").

8. In the Action Type field, select the conditions where this action will be valid.

n To limit the action to new records, select the Create only type.

n To limit the action to existing records, select the Update only type.

n To make the action available for both new and existing records, select the Merge

type.

9. Click Save.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 26 of 242



Publish a Service Manager field in the Web Services API

You must have the SysAdmin capability words to use this procedure.

1. Log in to Service Manager as a System Administrator.

2. Click Tailoring > Web Services > Web Service Configuration. Service Manager

displays the External Access Definition form.

3. In the Service Name field, select the name of the Service Manager table or join file

in which you want to rename fields.

Note: If a join file is chosen, the Fields tab lists all of the fields for all of the

files in the join file.

4. Click Search. The web services record for that table opens.

5. Click the Fields tab.

6. In the Field field, type the name of field for which you want to create an alias.

Note: To specify a compound field type such as an array of structure or an

array of characters, you must use a special syntax.

7. In the Caption field, type the name (alias) you want the field to have in the Web

Services API.

Caution: Since this name becomes part of the WSDL the name must consist of

alphanumeric characters valid for XML. The name cannot consist of XML

reserved characters such as brackets (< & >), colons (:), or quotation marks (“ &

”).

8. In the Type column, select a data type override, if any, you want the field to have in

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 27 of 242



the Web Services API.

Note: If you leave the Type field blank, Service Manager uses the default

mapping to determine the data type. Any data type you select overrides the

default mapping. The default is StringType.

9. Click Save.

What data types should I use for SOAP?

HP Service Manager has a more lenient data typing policy than the XML schema data

typing policy used for Web Services. Certain field types in Service Manager can

correspond to multiple data types in the XML schema data type policy. For example,

the Service Manager data type decimal could be a decimal, a floating number, or an

integer in the XML schema data type policy.

In addition, the actual formatting of data varies between Service Manager and XML

schema data types. This is especially true of Service Manager date/time fields that use

a different order than XML schema dates. Because some Web Services may require

changes to field data format, you can now define the XML Schema data type you want

Service Manager to convert the field's data to when you publish the field as part of a

web service.

For outbound data, the Service Manager server automatically converts Service Manager

data to the format you select in the data policy record for the Service Manager field.

For inbound data, the Service Manager server automatically converts the XML schema

data to the Service Manager field's listed data type format.

The services, objects, and fields published in the Service Manager Web Services API

already have the proper XML schema data mappings listed in the Web Services

definition (extaccess record). If the extaccess record does not list a data type mapping,

then the Web Services API treats the field data as a string.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 28 of 242



The following table lists the available SOAP API data types and their Service Manager

equivalents.

SOAP API Data Type Service Manager Data Type

Base64Type used for binary data

BooleanType Boolean

ByteType Decimal

DateTimeType Date/Time

DateType Date/Time

TimeType Date/Time

DurationType Date/Time

DecimalType Decimal

DoubleType Decimal

IntType Decimal

LongType Decimal

ShortType Decimal

FloatType Decimal

StringType Text

Caution: Always map Service Manager date/time fields to the XML schema

dateTime or to one of the related XML schema date or time types. Otherwise these

fields will cause errors when you consume the service.

Caution: When integrating with Service Manager, array data should be broken into

multi elements by separator "\r." This is because Service Manager uses "\r" as the

separator between array elements. When a string that contains "\r" is retrieved

from the Service Manager system, it is decoded as an array with multiple elements

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 29 of 242



separated by "\r". For this reason, when integrating other applications (for

example, UCMDB) with Service Manager through web services, array data should be

broken into multi elements by separator "\r" before the data is encoded and sent to

the Service Manager system. For example, if an array contains elements "aabb" and

"ccdd", it should be sent to Service Manager as the following:

<ns:Comments type=\"Array\">

<ns:Comments mandatory=\"\" readonly=\"\">aabb</ns:Comments>

<ns:Comments mandatory=\"\" readonly=\"\">ccdd</ns:Comments>

</ns:Comments>

You can define the data type you want Service Manager to convert field data to when

publishing it as a Web Service. These data types are consistent with XML schema data

types.

1. Click Tailoring > Database Manager.

2. In the Table field, type extaccess and click Search. The External Access Definition

record opens.

3. In the Name field, select the name of the Service Manager table whose exposed

field you want to define datatypes for.

4. Click Search. The External Access Definition record for the table opens.

5. On the Fields tab, find the field that you want to define the data type for.

6. In the Type column for that field, either type the data type or select a data type

from the predefined list in the drop-down list.

Note: The data type you select for this field becomes an XML schema data type

in the web services WSDL.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 30 of 242



Caution: You must also specify a Field name in API value when you set a data

type value. Data type validation depends upon the existence of an alias name.

7. Click Save.

What methods do I need?

By default, any operation that is a part of the Document Engine for a table can be made

available in the table’s Web service. If you need additional methods, add them to the

Document Engine first so that HP Service Manager has a process to follow when

performing them. If you have methods in the Document Engine that you do not want

exposed, delete them from the allowed actions array in the extaccess table.

Note: All actions performed from Web Services have to run without user interaction in

Service Manager. It is not possible to prompt the user for more information when that

user is a Web Services consumer.

Managing records with Web Services requests

An implementer can send a Web Services request to HP Service Manager that will

create a new record, update an existing record, or merge two records. These actions

are defined by selecting a value in the Action Type field on the Allowed Actions tab of

the extaccess record. The following is a description of the expected behavior for each of

the values in the drop-down list.

Create only

The server uses Create Semantics to initialize the file variable, fill it with the data from

the Web Services request, and pass it to the se.external.action RAD application.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 31 of 242



Update only

The server uses Update Semantics to select the matching record before calling the

se.external.action RAD application. The server returns an error if it does not find a

matching record.

Merge

The server attempts to select the record. If it finds the record, it changes the action to

Update and calls the se.external.action RAD application. If the server fails to find the

record, it changes the action to Create and calls the se.external.action RAD application.

If either the Update or Create action is missing, the se.external.action returns a 70 –

invalid action error message.

If there is no value specified in the Action Type field, the server uses Update Semantics.

The only exception is when the Action Name specified is Create, in which case the

server uses Create Semantics.

Are there any security considerations?

After you have exposed data via Web Services, any client consuming the Web Service

you are publishing has access to that data. If there are certain fields that you want to

restrict from specific clients, create a different Web Service with those fields removed

and have these clients consume that data.

What are released Web Services?

The Web Services delivered out-of-box with Service Manager are read-only and marked

with the released option in the external access definition form. You should consider any

Web Service with the released option selected as the supported version of the Web

Service in Service Manager. While it is possible to clear the released option and edit or

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 32 of 242



delete the Web Service, HP recommends that you instead work on a copy of the Web

Service that you give it a different name. While the released option is selected the

external access definition remains read-only.

Enable SSL encryption for published Web Services

If you want external Web Services clients to use an SSL connection with the Service

Manager server, you must provide them with the CA certificate for the Service Manager

server. If you purchased a server certificate, copy the CA certificate from the CA

certificate keystore provided with your purchased certificate. If you generated your

own server certificate by using a self-signed private CA certificate, copy the CA

certificate from your private CA certificate keystore instead.

Note: HP recommends you do not use the Service Manager sample server CA

certificate because the sample certificate uses a common name (CN) for the server

which will not match your actual server name. The best practice is to purchase or

create a valid certificate for the Service Manager server in order to establish an

SSL-encrypted connection with external web service clients.

1. Copy the keystore that contains the CA certificate that signed your server's

certificate and send it to the systems running the external Web Services clients.

Out-of-box, Service Manager uses a sample CA certificates keystore as part of the

Web tier.

Note: HP recommends using a CA certificate that you created or purchased

instead of the default Service Manager CA certificate.

2. Import the CA certificate of the Service Manager system into the CA certificate

keystore of the external Web Services client. You may use a tool like keytool to

import the Service Manager CA certificate.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 33 of 242



3. Configure the external Web Services client to use the updated CA certificate

keystore. Follow the instructions for your Web Services client to set the path to the

CA certificate keystore.

4. Update the endpoint URL that the external Web Services client uses to include the

HTTPS protocol.

For example, https://myserver.mydomain.com:13443/SM/7/ws for SOAP

and https://myserver.mydomain.com:13443/SM/9/rest for RESTful.

Follow the instructions for your Web Service client to update the endpoint URL.

Note: The endpoint URL must use the Service Manager server's common name

(CN) as defined in the server certificate. For example, if the server certificate

uses the name myserver.mydomain.com, then the endpoint URL must also use

the name myserver.mydomain.com.

Note: If you want external Web Services clients to download the Service

Manager Web Services WSDL, point them to a URL using the following format:

https://myserver.mydomain.com:13443/SM/7/<Service Name>.wsdl

List: Web Services available in the Service
Manager Web Services API
The Service Manager Web Services includes ITIL-compliant Web Services. The following

table lists some of those web services. To see all the Web Services that are ITIL-

compliant, use Web Service Configuration in Tailoring (Tailoring > Web Services > Web

Service Configuration) and then do a true search. This will list all of the out-of-box

services.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 34 of 242



Note: This is the out-of-box list for SOAP.

Web Service URL to access WSDL Service Manager objects (tables)
published

Change
Management

ChangeManagement.wsdl Change (cm3r), ChangeTask (cm3t)

Configuration
Management

ConfigurationManagement.wsdl Company (company), Contact
(contacts), Department (dept),
Device (device), DeviceParent
(deviceparent), Computer
(joincomputer), DisplayDevice
(joindisplaydevice), Furnishing
(joinfurnishings), HandHeldDevice
(joinhandhelds), MainFrame
(joinmainframe), NetworkDevice
(joinnetworkcomponents),
OfficeElectronic
(joinofficeelectronics),
SoftwareLicense
(joinsoftwarelicense),
StorageDevice (joinstorage),
TelecommunicationDevice
(jointelecom), Location (location),
Model (model), InstalledSoftware
(pcsoftware), Vendor (vendor)

Incident
Management

IncidentManagement.wsdl Incident (probsummary), Incident
Task (imTask)

Problem
Management

ProblemManagement.wsdl Problem (rootcause)

Service Desk ServiceDesk.wsdl Call (incidents)

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 35 of 242



Web Service URL to access WSDL Service Manager objects (tables)
published

Service Level
Management

ServiceLevelManagement.wsdl ServiceEntry (serviceent), SLA
(sla), ActiveSLA (slaactive),
AssignedSLA (slaassigned), SLA
Control (slacontrol), MonthlySLA
(slamonthly), MonthlySLALag
(slamonthlylag), SLAResponse
(slaresponse)

Request
Fulfillment

RequestManagement.wsdl Request (request), Request Task
(requestTask)

For RESTful, you can find the out-of-box list from the Service Document,

http://<server>:<port>/SM/9/rest.

Field names in the extaccess record
Implementers can change the field name and data type of a Service Manager field when

they publish the field as part of a Web Service. To change the field name and data type

of a Service Manager field, the implementer must specify the Service Manager field in

the extaccess record using one of the formats listed in the following table.

Type of
Service
Manager
field

Format required to specify field Example field listing
fromthe Web Services
API

All
primitive
fields

field.name initial.impact

array

field field.name misc.array1

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 36 of 242



Type of
Service
Manager
field

Format required to specify field Example field listing
fromthe Web Services
API

structure

field 1

field 2

field 3

structure.name,field.name.1

structure.name,field.name.2

structure.name,field.name.3

header,agreement.id

header,approval.statu
s

header,assigned.to

array

structure

field 1

field 2

field 3

array.name[field.name.1]

array.name[field.name.2]

array.name[field.name.3]

affected.ci
[ci.assign.group]

affected.ci
[ci.device.name]

affected.ci
[ci.device.type]

structure
1

structure
2

field 1

field 2

field 3

structure.name.1,structure.name.2,field.name.
1

structure.name.1,structure.name.2,field.name.
2

structure.name.1,structure.name.2,field.name.
3

<no example
available>

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 37 of 242



Type of
Service
Manager
field

Format required to specify field Example field listing
fromthe Web Services
API

structure
1

array

structure
2

field 1

field 2

field 3

structure.name.1,array.name[field.name.1]

structure.name.1,array.name[field.name.2]

structure.name.1,array.name[field.name.3]

<no example
available>

Create dedicated Web Services listeners
An HP Service Manager system configured for vertical or horizontal scaling uses a Load

Balancer to redirect client connection requests to an available Service Manager

process. A system that also has many Web Services may need a Load Balancer for

multiple nodes. Service Manager's Web Services do not support http redirect, and will

fail to clean up the resources on the Service Manager loadBalancer process, if the

loadBalancer port is used as the endpoint URL. For this reason, HP recommends

creating one or more Service Manager processes dedicated to Web Services requests.

You can then configure any external Web service clients to connect directly to the

dedicated Service Manager processes. If your system needs a load balancer, use a

hardware load balancer to balance between a set of servlets with the debugnode

parameter.

1. Log in to the host running Service Manager with an administrator account.

2. Stop the Service Manager server.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 38 of 242



Note: It is not necessary to stop and start the Service Manager server to add a

new port. You can add the line to the sm.cfg file while the system is running

and start that same port from a command prompt manually.

3. Open the sm.cfg file, and create a dedicated Service Manager process to listen for

Web Services requests using the -debugnode parameter. For example, the

following entries create a dedicated process listening on ports 13085 and 13445.

sm -httpPort:13080 -loadbalancer

sm -httpPort:13081 -httpsPort:13443

sm -httpPort:13083 -httpsPort:13444

sm -httpPort:13085 -httpsPort:13445 -debugnode

Note: The debugnode parameter tells the Service Manager Load Balancer not

to forward any client connection requests to this Service Manager process. Only

clients that directly connect to the process can access it.

4. Restart the Service Manager server.

5. Configure any external web service clients to connect directly to the Service

Manager processes running in debugnode. For example, set the endpoint URL to

http://<fully qualified host name>:13085/SM/7/<Service

Name> for normal connections and set the URL to https://<fully

qualified host name>:13445/SM/7/<Service Name> for SSL-

encrypted connections.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 39 of 242



Data conversion between Service Manager
and SOAP Web Services
HP Service Manager has a more lenient data typing policy than the XML schema data

typing policy used for Web Services. Certain field types in Service Manager can

correspond to multiple data types in the XML schema data type policy. For example,

the Service Manager data type decimal could be a decimal, a floating number, or an

integer in the XML schema data type policy.

In addition, the actual formatting of data varies between Service Manager and XML

schema data types. This is especially true of Service Manager date/time fields that use

a different order than XML schema dates. Because some Web Services may require

changes to field data format, you can now define the XML Schema data type you want

Service Manager to convert the field's data to when you publish the field as part of a

web service.

For outbound data, the Service Manager server automatically converts Service Manager

data to the format you select in the data policy record for the Service Manager field.

For inbound data, the Service Manager server automatically converts the XML schema

data to the Service Manager field's listed data type format.

For example, the Service Manager Web Services API publishes the Service Manager field

closed.time as ClosedTime in the IncidentManagement service. The Web Services API

converts the outbound Service Manager data into the appropriate ISO 8601 date format

for XML schema. When the Web Service responds, the Web Service API converts the

ISO-formatted date back into a Service Manager date format. Here is an example: the

conversion between 1994-11-05T08:15:30-05:00 and November 5, 1994,

8:15:30 am, US Eastern Standard Time by the Web Services API.

The services, objects, and fields published in the Service Manager Web Services API

already have the proper XML schema data mappings listed in the Web Services

definition (extaccess record). If the extaccess record does not list a data type mapping,

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 40 of 242



then the Web Services API treats the field data as a string field. Typically, you only

need to add or change a Web Services API data type mapping to publish custom fields

you have added to Service Manager as Web Services objects.

Caution: Changing the Web Services API data type mappings for existing fields in

the Service Manager Web Services API may result in data mismatch errors.

Example: Publishing the Terminate Change
functionality via Web Services
In the default Service Manager system, the Terminate Change functionality is not

published via Web Services.

To publish the Terminate Change functionality, follow the steps described in this

section.

Create a display option

Add a Display Option record to eliminate the prompt for a closure code and closing

comments.

Field Value

Screen ID cm.view.display

Modifies
Record

Leave blank

Action terminatebg

Unique ID cm.view.display_terminatebg

GUI option 6

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 41 of 242



Field Value

Balloon
Help (If
Option <
200)

Terminate Change

Text Option 6

Default
Label

Terminate Background

Bank 1

Text
Alternative

Leave blank

Condition evaluate($L.tableAccess.close) and open in
$L.file=true and nullsub($G.ess, false)=false and
(category in $L.file="Release Management" and
($phasepntr=3 or $phasepntr=2 or $phasepntr=1))

User
Condition

$G.bg=true

RAD tab

PreRad
Expressions
subtab

$terminate.release=true

Create a new process

Enter the following values in the Process Definition record to create the

terminate.release.bg Process record.

Field Value

Process Name terminate.release.bg

Run in Window? Select this option

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 42 of 242



Field Value

RAD tab

Expressions evaluated before RAD call

$L.file.vars={$L.category, $L.phase, $L.fc,
$L.fc.master}

if (index(current.phase in $L.file, phases in
$L.category)=lng(denull(phases in
$L.category))) then ($L.last=true) else
($L.last=false)

RAD Application sla.confirm.outage

Condition $L.last and enable
in$G.sla.environment

Parameter Names file

Parameter Values $L.file

Expressions evaluated before RAD call

$L.terminated.parent.name=number in
$L.file;$terminate.ok=true;$terminate.
release=true

RAD Application cm3.close.child.tasks

Condition true

Parameter Names name

Parameter Values $L.terminated.parent.name

Expressions evaluated beforeRAD call

$phasepnt=7;current.phase in $L.file="Verification"

status in $file="terminated"

RAD Application cm.close

Condition true

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 43 of 242



Field Value

Parameter Names record

second.file

boolean.1

prompt

Parameter Values $L.file

$L.object

$L.bg

$L.exit

Set up a State record

Add the following entries to the cm.view State record.

l Display Action: terminatebg

l Process Name: terminate.release.bg

l Condition: true

l Save First: (leave blank)

Set up an extaccess record

1. Update the extaccess record to expose this function. Select the extaccess record

with Name = cm3r. Type TerminateChange in Object Name and click Add.

2. Add the following entries to the extaccess record:

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 44 of 242



n Allowed Actions: terminatebg

n Actions: Terminate

n Action Type(Leave Blank)

3. If you want to use RESTful API, on RESTful tab, type the following:

Field Value

RESTful
Enabled

Checked

Attachment
Enabled

Checked if you want to use attachment later.

Resource
Collection
Name

terminatechanges

Resource
Name

TerminateChange

Unique Keys header,number

Max Records
Returned in
Query

1,000

Query
Authorization

lioption("Change Management") and (index("SysAdmin",
$lo.ucapex)>0 or index("ChMAdmin", $lo.ucapex)>0 or index
("change request", $lo.ucapex)>0)

Resource
Collection
Actions: POST

Create

Resource
Actions:POST

Update

Resource
Actions:PUT

Update

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 45 of 242



Execute a request via SOAP Web Services

Execute the following request via SOAP Web Services.

Note: The change number has to be a change of the Release Management category.

ClosingComments and ClosureCode are required fields for terminating a Release

Management change.

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:TerminateChangeRequest attachmentInfo="?"
attachmentData="?"
ignoreEmptyElements="true">

<pws:model query="">
<pws:keys query="">

<!--Optional:-->
<pws:ChangeNumber type="String" mandatory="?"

readonly="?">C10027</pws:ChangeNumber>
</pws:keys>
<pws:instance query="" uniquequery="?" recordid="?">

<pws:header type="Structure">
<!--Optional:-->
<pws:ChangeNumber type="String" mandatory="?"

readonly="?"></pws:ChangeNumber>
<!--Optional:-->
<pws:Category type="String" mandatory="?"

readonly="?"></pws:Category>
<!--Optional:-->
<pws:Status type="String" mandatory="?"

readonly="?">terminated</pws:Status>
<!--Optional:-->

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 46 of 242



<pws:ApprovalStatus type="String" mandatory="?"
readonly="?"></pws:ApprovalStatus>

<!--Optional:-->
<pws:RequestedBy type="String" mandatory="?"

readonly="?"></pws:RequestedBy>
<!--Optional:-->
<pws:AssignedTo type="String" mandatory="?"

readonly="?"></pws:AssignedTo>
<!--Optional:-->
<pws:Coordinator type="String" mandatory="?"

readonly="?"></pws:Coordinator>
<!--Optional:-->
<pws:CoordinatorPhone type="String"

mandatory="?"
readonly="?"></pws:CoordinatorPhone>

<!--Optional:-->
<pws:PlannedStartDate type="DateTime"

mandatory="?"
readonly="?"></pws:PlannedStartDate>

<!--Optional:-->
<pws:PlannedEndDate type="DateTime"

mandatory="?"
readonly="?"></pws:PlannedEndDate>

<!--Optional:-->
<pws:Reason type="String" mandatory="?"

readonly="?"></pws:Reason>
<!--Optional:-->
<pws:CurrentPhase type="String" mandatory="?"

readonly="?"></pws:CurrentPhase>
<!--Optional:-->
<pws:RiskAssessment type="String" mandatory="?"

readonly="?"></pws:RiskAssessment>
<!--Optional:-->
<pws:Priority type="String" mandatory="?"

readonly="?"></pws:Priority>
<!--Optional:-->
<pws:DateEntered type="DateTime" mandatory="?"

readonly="?"></pws:DateEntered>
<!--Optional:-->

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 47 of 242



<pws:Open type="Boolean" mandatory="?"
readonly="?"></pws:Open>

<!--Optional:-->
<pws:BackoutDuration type="Duration"

mandatory="?"
readonly="?"></pws:BackoutDuration>

<!--Optional:-->
<pws:CloseTime type="DateTime" mandatory="?"

readonly="?"></pws:CloseTime>
<!--Optional:-->
<pws:ForeignID type="String" mandatory="?"

readonly="?"></pws:ForeignID>
<!--Optional:-->
<pws:RFCType2 type="String" mandatory="?"

readonly="?"></pws:RFCType2>
<!--Optional:-->
<pws:Company type="String" mandatory="?"

readonly="?"></pws:Company>
<!--Optional:-->
<pws:BriefDescription type="String"

mandatory="?"
readonly="?"></pws:BriefDescription>

<!--Optional:-->
<pws:Subcategory type="String" mandatory="?"

readonly="?"></pws:Subcategory>
<!--Optional:-->
<pws:SLAAgreementID type="Int" mandatory="?"

readonly="?"></pws:SLAAgreementID>
</pws:header>
<pws:description.structure type="Structure">

<!--Optional:-->
<pws:Description type="Array">

<!--Zero or more repetitions:-->
<pws:Description type="String" mandatory="?"

readonly="?"></pws:Description>
</pws:Description>
<!--Optional:-->
<pws:Justification type="Array">

<!--Zero or more repetitions:-->

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 48 of 242



<pws:Justification type="String"
mandatory="?"
readonly="?"></pws:Justification>

</pws:Justification>
<!--Optional:-->
<pws:BackoutMethod type="Array">

<!--Zero or more repetitions:-->
<pws:BackoutMethod type="String"

mandatory="?"
readonly="?"></pws:BackoutMethod>

</pws:BackoutMethod>
</pws:description.structure>
<pws:middle type="Structure">

<!--Optional:-->
<pws:ConfigurationItem type="String"

mandatory="?"
readonly="?"></pws:ConfigurationItem>

<!--Optional:-->
<pws:Location type="String" mandatory="?"

readonly="?"></pws:Location>
<!--Optional:-->
<pws:Misc1 type="String" mandatory="?"

readonly="?"></pws:Misc1>
<!--Optional:-->
<pws:Misc2 type="String" mandatory="?"

readonly="?">pass</pws:Misc2>
<!--Optional:-->
<pws:Misc3 type="String" mandatory="?"

readonly="?"></pws:Misc3>
<!--Optional:-->
<pws:Misc4 type="String" mandatory="?"

readonly="?"></pws:Misc4>
<!--Optional:-->
<pws:Misc5 type="String" mandatory="?"

readonly="?"></pws:Misc5>
<!--Optional:-->
<pws:Misc6 type="String" mandatory="?"

readonly="?"></pws:Misc6>
<!--Optional:-->

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 49 of 242



<pws:Misc7 type="String" mandatory="?"
readonly="?"></pws:Misc7>

<!--Optional:-->
<pws:Misc8 type="String" mandatory="?"

readonly="?"></pws:Misc8>
<!--Optional:-->
<pws:Misc9 type="String" mandatory="?"

readonly="?"></pws:Misc9>
<!--Optional:-->
<pws:Misc10 type="String" mandatory="?"

readonly="?"></pws:Misc10>
<!--Optional:-->
<pws:OutageStart type="DateTime" mandatory="?"

readonly="?"></pws:OutageStart>
<!--Optional:-->
<pws:OutageEnd type="DateTime" mandatory="?"

readonly="?"></pws:OutageEnd>
<!--Optional:-->
<pws:ScheduledOutageStart type="DateTime"

mandatory="?"
readonly="?"></pws:ScheduledOutageStart>

<!--Optional:-->
<pws:ScheduledOutageEnd type="DateTime"

mandatory="?"
readonly="?"></pws:ScheduledOutageEnd>

<!--Optional:-->
<pws:ActualOutageStart type="DateTime"

mandatory="?"
readonly="?"></pws:ActualOutageStart>

<!--Optional:-->
<pws:ActualOutageEnd type="DateTime"

mandatory="?"
readonly="?"></pws:ActualOutageEnd>

<!--Optional:-->
<pws:MiscArray1 type="Array">

<!--Zero or more repetitions:-->
<pws:MiscArray1 type="String" mandatory="?"

readonly="?"></pws:MiscArray1>
</pws:MiscArray1>

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 50 of 242



<!--Optional:-->
<pws:MiscArray2 type="Array">

<!--Zero or more repetitions:-->
<pws:MiscArray2 type="String" mandatory="?"

readonly="?"></pws:MiscArray2>
</pws:MiscArray2>
<!--Optional:-->
<pws:MiscArray3 type="Array">

<!--Zero or more repetitions:-->
<pws:MiscArray3 type="String" mandatory="?"

readonly="?">test passed</pws:MiscArray3>
</pws:MiscArray3>
<!--Optional:-->
<pws:Assets type="Array">

<!--Zero or more repetitions:-->
<pws:Assets type="String" mandatory="?"

readonly="?"></pws:Assets>
</pws:Assets>
<!--Optional:-->
<pws:EstimateDescription type="String"

mandatory="?"
readonly="?"></pws:EstimateDescription>

<!--Optional:-->
<pws:EstimatePrice type="String" mandatory="?"

readonly="?"></pws:EstimatePrice>
<!--Optional:-->
<pws:ActualCost type="String" mandatory="?"

readonly="?"></pws:ActualCost>
<!--Optional:-->
<pws:ActualPrice type="String" mandatory="?"

readonly="?"></pws:ActualPrice>
</pws:middle>
<pws:close type="Structure">

<!--Optional:-->
<pws:CompletionCode type="Decimal"

mandatory="?"
readonly="?">1</pws:CompletionCode>

<!--Optional:-->
<pws:ClosingComments type="Array">

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 51 of 242



<!--Zero or more repetitions:-->
<pws:ClosingComments type="String"

mandatory="?"
readonly="?">Terminating Change</pws:ClosingComments>

</pws:ClosingComments>
</pws:close>
<!--Optional:-->
<pws:Urgency type="String" mandatory="?"

readonly="?"></pws:Urgency>
<!--Optional:-->
<pws:InitialAssessment type="String" mandatory="?"

readonly="?"></pws:InitialAssessment>
<!--Optional:-->
<pws:attachments>

<!--Zero or more repetitions:-->
<com:attachment href="?" contentId="?"

action=""
name="?" type="?" len="?" charset="?" attachmentType="?"/>

</pws:attachments>
</pws:instance>
<!--Optional:-->
<pws:messages>

<!--1 or more repetitions:-->
<com:message type="String" mandatory="?"

readonly="?"
severity="?" module="?"></com:message>

</pws:messages>
</pws:model>

</pws:TerminateChangeRequest>
</soapenv:Body>

</soapenv:Envelope>

Response to a request via SOAP Web Services

The response to a request via SOAP Web Services is as follows:

<SOAP-ENV:Envelope xmlns:SOAP

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 52 of 242



-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<TerminateChangeResponse message="Success" returnCode="0"
schemaRevisionDate="2008-05-21" schemaRevisionLevel="5"
status="SUCCESS"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS
http://<sm
server>.americas.hpqcorp.net:13701/sc62server/ws/Change.xsd"
xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<model>
<keys>

<ChangeNumber type="String">C10027</ChangeNumber>
</keys>
<instance recordid="C10027 - test"

uniquequery="header,number=&quot;C10027&quot;">
<header type="Structure">

<ChangeNumber
type="String">C10027</ChangeNumber>

<Category type="String">Release
Management</Category>

<Status type="String">terminated</Status>
<ApprovalStatus

type="String">approved</ApprovalStatus>
<RequestedBy type="String">ALSTON,

LOU</RequestedBy>
<Coordinator type="String">CM 3</Coordinator>
<Reason type="String">problem</Reason>
<CurrentPhase

type="String">Verification</CurrentPhase>
<Priority type="String">1</Priority>
<DateEntered type="DateTime">2008-05-

27T16:34:26+00:00</DateEntered>
<Open type="Boolean">false</Open>
<BackoutDuration

type="Duration">P0DT0H0M0S</BackoutDuration>
<CloseTime type="DateTime">2008-05-

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 53 of 242



27T16:34:26+00:00</CloseTime>
<Company type="String">advantage</Company>
<BriefDescription

type="String">test</BriefDescription>
</header>
<description.structure type="Structure">

<Description type="Array">
<Description

type="String">test</Description>
</Description>

</description.structure>
<middle type="Structure">

<Location type="String">North
America</Location>

<Misc2 type="String">pass</Misc2>
<MiscArray3 type="Array">

<MiscArray3 type="String">test
passed</MiscArray3>

</MiscArray3>
</middle>
<close type="Structure">

<CompletionCode
type="Decimal">1</CompletionCode>

<ClosingComments type="Array">
<ClosingComments type="String">Terminating

Change</ClosingComments>
</ClosingComments>

</close>
<Urgency type="String">1</Urgency>
<InitialAssessment

type="String">1</InitialAssessment>
</instance>

</model>
<messages>

<cmn:message type="String">Audit Record successfully
recorded
and added.</cmn:message>

<cmn:message type="String">Change C10027 Phase
Verification

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 54 of 242



Closed by System Administrator.</cmn:message>
</messages>

</TerminateChangeResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>END

Execute a request via RESTful Web Services

Execute the following request via RESTful Web Services.

Note: The change number must be a change of the Release Management category.

ClosingComments and ClosureCode are required fields for terminating a Release

Management change.

POST an action terminate to a change which is in Evaluation & Change Closure phase.

The json data resembles:

{ "TerminateChange": {
"close":{

"ClosingComments":"closureComments tested",
"ClosureCode":"1"

}
}

}

Response to a request via RESTful Web Services

The response to a request via RESTful Web Services resembles:

{
"Messages": [],
"ReturnCode": 0,
"TerminateChange": {

"Impact": "4",
"RequestedEndDate": "2007-10-23T21:06:00+00:00",

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 55 of 242



"Service": "Applications",
"Urgency": "1",
"close": {

"ClosingComments": ["closureComments tested"],
"ClosureCode": 1

},
"description.structure": {"Description": ["Check and clean

system on virusses."]},
"header": {

"ApprovalStatus": "approved",
"AssignmentGroup": "Application",
"BackoutDuration": "P0DT0H0M0S",
"Category": "Maintenance",
"ChangeCoordinator": "Change.Coordinator",
"ChangeID": "C10019",
"Company": "advantage",
"DateEntered": "2013-07-02T09:16:29+00:00",
"InitiatedBy": "BERRY, ELLIS",
"Open": true,
"Phase": "Evaluation & Change Closure",
"PlannedEnd": "2008-10-19T18:00:00+00:00",
"PlannedStart": "2008-10-12T18:00:00+00:00",
"Priority": "2",
"RiskAssessment": "5",
"Status": "initial",
"Subcategory": "Maintenance",
"Title": "Multiple virusses"

},
"middle": {

"Assets": ["Norton Anti-Virus"],
"ConfigurationItem": "Norton Anti-Virus",
"Location": "North America"

}
}

}

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 56 of 242



Publish a table as a Web service
You must have the SysAdmin capability words to use this procedure.

1. Login to Service Manager as a System Administrator.

2. Click Tailoring > Database Manager.

3. In the Table field, type extaccess.

4. Click Search.

5. In the Name field, select the name of the Service Manager table or join file you

want to publish as a web service.

Caution: Type the name of the table as it is defined in the database dictionary.

Note: Only valid Service Manager table names appear in the list. This list

includes the names of tables that do not physically reside in the database, but

are defined in memory at run time based on join definitions and relationship

information in joindef and erddef records respectively.

6. In the Service Name field, type the name of the Web service you want to use to

publish this table. You can reuse the same web service name to publish multiple

tables, as long the combination of Service Name and Object Name is unique.

Caution: Since this name becomes part of a URL, the name must consist of

alphanumeric characters that are valid for URLs. The name cannot consist of

URL reserved characters such as spaces, slashes, or colons.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 57 of 242



Note: The name you type in this field becomes the alias name for service and

becomes part of the Web service URL. For example, if you type

IncidentManagement for the service name, then SOAP applications must include

IncidentManagement.wsdl in the URL to access this service.

7. In the Object Name field, type the name you want to use to identify this table.

Note: The name is unique and cannot be used by other Web Services

definitions.

Note: The name you type in this field becomes the alias name for the table and

becomes part of the Web service WSDL. For example, if you type Incident for

the object name, then the SOAP operations for this table include Incident as

part of the WSDL element (such as RetrieveIncident, CreateIncident, and

ResolveIncident).

Caution: Since this name becomes part of the WSDL, the name must consist of

alphanumeric characters valid for XML. The name cannot consist of XML

reserved characters such as brackets (< & >), colons (:), or quotation marks (" &

’).

8. In the Allowed Actions array, select the Service Manager Document Engine display

actions you want to globally enable for this table.

Note: Each table has its own set of display actions allowed as defined in the

Service Manager Document Engine. Enabling or disabling the display actions

from this field only determines whether the display action is available through

the Web Services API. Service Manager still validates the operator credentials

supplied with each Web service request to ensure that the operator has

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 58 of 242



sufficient privileges to perform the display action. Click the array field to see a

list of allowable display actions for the table you select.

Note: If a join file is chosen, the allowed actions for the join file come from the

primary table of the join.

9. In the Action Names field, type the name you want to use in the Web Services API

to identify the Document Engine display actions for this table.

Note: The name you type for this field becomes the alias name for the display

action and becomes part of the Web service WSDL. For example, if you type

Create for the add action of the Incident object, then the WSDL operation

becomes CreateIncident and the WSDL messages are CreateIncidentRequest

and CreateIncidentResponse.

Caution: Since this name becomes part of the WSDL, the name must consist of

alphanumeric characters valid for XML. The name cannot consist of XML

reserved characters such as brackets (< & >), colons (:), or quotation marks (" &

’).

10. If you want to use RESTful API, you need to configure RESTful tab field too. Type the

name of Resource Collection and Resource you want to use, and set the Unique Key

and default actions.

11. Click Add.

Users can now access this Service Manager table from a custom or third-party Web

Service client and use the actions you have enabled.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 59 of 242



Expose a table with more than one Web
service
User role: System Administrator

An implementer can define multiple Web service definition records with different

names for a given table or join file, and have different fields and actions exposed for

each.

1. Click Tailoring > Web Services > Web Service Configuration Utility.

2. In the Table field, type extaccess, and then click Search. The External Access

Definition form opens.

3. In the Name field, select or type the name of the table or join file for which you

want to create a copy of the extaccess record, and then click Search. The record

opens.

4. Change the Service Name to the name of the web service you want to use to

publish the Service Manager table.

Note: The combination of Service Name and Object Name must be unique to

this record. The combination cannot exist anywhere else in the system.

5. Change the Object Name to the name you want to use to identify the Service

Manager table in the Web Services API.

6. On the Fields tab, change the fields that are exposed and modify the Caption and

Type information, if necessary.

Note: If a join file is chosen, the Fields tab lists all the fields for all the files in

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 60 of 242



that join file.

7. On the Allowed Actions tab, change the actions, if necessary.

8. On the Expressions tab, add expressions, if necessary.

9. On the RESTful tab, add RESTful API configurations, if necessary.

10. Click Add.

The new extaccess record is added to the system. When you view the exposed Object

(for example, WSDL for SOAP) for both web services, they should display with the

applicable actions and fields, as defined in each extaccess record.

Remove a Document Engine display action
from a Web service
You must have the SysAdmin capability word to use this procedure.

The Service Manager Web Services Configuration Utility allows you to remove any

Document Engine display action you published as part of a Web service.

1. Click Tailoring > Web Services > Web Service Configuration.

2. In Service Name, type the name of the service.

3. In the Name field, type the name of the Service Manager table whose display

actions you want to remove.

4. From the Allowed Actions array, select the Document Engine display action you

want to remove from the list.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 61 of 242



5. Clear the Allowed Actions field with the Backspace key.

6. Click Save.

Remove a Service Manager field from a Web
service
You must have the SysAdmin capability words to use this procedure.

1. Click Tailoring > Web Services > Web Service Configuration Utility.

2. In the Table field, type extaccess and click Search. The External Access Definition

record opens.

3. In the Name field, select the name of the Service Manager table in which you want

to remove fields.

4. Click Search. The Web Services record for that table opens.

5. On the Fields tab, find the fields you want to remove and make the value that is

currently there NULL.

6. In the Caption column, make the value NULL for the field you want to remove.

7. In the Type column, make the value NULL for the field you want to remove.

8. Click Save.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 62 of 242



Sample client for SOAP Web Services SM7
URL
The HP Service Manager server includes a sample Web Services client application for

the http://servername:port_number/SM/7/service_name.wsdl. The

sample application was created for Apache™ Axis2 (version 2.1.4). If you have Axis

2.1.4 and Apache™ Ant installed, you can review and update the source code of the

sample application as well as generate updated proxy code to test the Service Manager

Web Services functionality. The Apache Axis2 sample is written in Java. The sample

client application is included with the server installation in the following folder:

<Service Manager server installation folder>

\webservices\sample\sm7webservice

The sample includes the source code for the client applications as well as support files

for the Web Services development environment. The Apache Axis2 jar files are included

and they are located under the "lib" folder. A set of the batch files that you can use to

run each class are located under the "bin" folder and you can run each class from the

Windows command prompt after you have compiled the sample Java. You can use the

sample application as an example of how to create your own custom Web Services

client applications.

Note: All the sample applications use a command line interface. To see the usage

information for the command line interface, change to "bin" folder, type

xxxSample where xxxSample is the batch file name of the sample application.

The Apache Axis2 sample client application assumes that you have a Service Manager

server instance running from the local host. If this is not the case, you can change the

server host name and port number using the sample's command line interface.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 63 of 242



Each of the sample folders includes a readme file that contains valuable information

about using the sample application found in each of the sample folder.

The sample client application contains examples of how to send the MTOM attachments

to the Service Manager server. 

Configuration Management sample

The sample client applications contain the following classes for Configuration

Management. Refer to the sample application source code for comments on the usage

of each class.

Field Description

ConfigurationManagementServiceUtility l Provides the CreateService method to
initialize an object for the service.

l Provides the InitServiceAuthentication
method to send the host name,
communications port, operator name,
and operator password with each SOAP
request.

CreateContactSample Creates a contact record with the supplied
parameters.

DeleteContactSample Deletes the contact record listed in the
supplied parameters.

RetrieveContactSample Retrieves a single contact record matching
the supplied parameters.

UpdateContactSample Updates a contact record with the supplied
parameters.

Incident Management sample

The sample client applications contain the following classes for Incident Management.

Refer to the sample application source code for comments on the usage of each class.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 64 of 242



Class Description

CloseIncidentSample Closes an incident record with the supplied
parameters.

CreateIncidentSample Creates an incident record with the supplied
parameters.

IncidentManagementServiceUtility l Provides the CreateService method to
initialize an object for the service.

l Provides the InitServiceAuthentication
method to send the host name,
communications port, operator name, and
operator password with each SOAP request.

ResolveIncidentSample Resolves an incident record matching the
supplied parameters.

RetrieveIncidentListSample Retrieves multiple incident records matching
the supplied parameters.

RetrieveIncidentSample Retrieves a single incident record matching the
supplied parameters.

UpdateIncidentSample Updates an incident record with the supplied
parameters.

Command line arguments for the
Axis2 sample application
The Axis2 sample application runs from the command prompt using Java. After you

have compiled the Axis2 sample into an executable class files, you can perform

configuration and incident management tasks with the following arguments.

Note: To see the usage information for the Axis2 sample application, type

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 65 of 242



ClassName where ClassName is the name of a sample application class.

Configuration Management

The following commands invoke Configuration Management functionality. These

examples assume you are using the batch files provided with the Axis2 sample

application to automatically set the class path and call the proper executable class.

Operation Command-line example

Create
contact

CreateContactSample -name "FALCON, MERLINE2" -fullname "MERLINE2
FALCON"

Delete
contact

DeleteContactSample DeleteContactSample -name "FALCON,
MERLINE2"

Retrieve
contact

RetrieveContactSample RetrieveContactSample -name "FALCON,
MERLINE2"

Update
Contact

UpdateContactSample UpdateContactSample -name "FALCON,
MERLINE2" -email "fmerline2@hp.com"

Incident Management

The following commands invoke Incident Management functionality. These examples

assume you are using the batch files provided with the Axis2 sample application to

automatically set the class path and call the proper executable class.

Operation Command-line example

Close
incident

CloseIncidentSample -incidentId IM10001 -closeCode "User Closer" -
resolution "Problem disappeared"

Create
incident

CreateIncidentSample -briefDescription "Java sample brief description"
-category incident -incidentDescription "This is a description" -severity
1 -subCategory hardware -productType "missing or stolen" -
initialImpact 1 -service Applications -primaryAssignmentGroup
Networks

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 66 of 242



Operation Command-line example

Create
incident
with
attachment
(s)

CreateIncidentSample -briefDescription "Java sample brief description"
-category incident -incidentDescription "This is a description" -severity
1 -subCategory hardware -productType "missing or stolen" -
initialImpact 1 -service Applications -primaryAssignmentGroup
Network -attachment 101.jpg:README.txt

Resolve
incident

ResolveIncidentSample -incidentId IM10006 -resolution "Problem
disappeared"

Retrieve
incident list

RetrieveIncidentListSample -incidentId IM10001:IM10002

Retrieve
incident

RetrieveIncidentSample -incidentId IM1001

Update
incident

UpdateIncidentSample -incidentId IM10006 -journalUpdates "User
provided more information"

The CreateIncicentSample and UpdateIncidentSample classes can send MTOM

attachments to Service Manager server. The command line argument is -attachment

file_01:file_02. You can send more than one attachment to Service Manager server. Be

sure to place the attachments in the <SM_installation_

directory>\webservices\sample\sm7webservices\Axis2Sample\b

in\resources directory.

Add an external access action to the Web
Services
You must have the SysAdmin capability words to use this procedure.

1. Click Tailoring > Web Services > External Access Actions. Service Manager

displays the External Access Actions form.

2. In External Action ID, type a unique ID name.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 67 of 242



3. In RAD/ScriptLibrary.function, type the name of the RAD or JavaScript function you

want to make available as a custom action in the Web Services API.

Note: To specify a script from the Script Library, use the following format:

<script name>.<function name>

For example, Approval.buildAllStatus.

4. In Type, select RAD to if your custom action is a RAD function or select JavaScript if

your custom action is a JavaScript.

5. In Description, type the name you want custom action to have.

Note: Service Manager displays the name you type here as the Custom Action

to Perform in the External Access Defintion form.

The type you select determines what Parameters array Service Manager displays.

If you select RAD, Service Manager displays an array with Parameter Names and

Parameter Values fields. If you select JavaScript, Service Manager displays an array

with only the Parameter Values field.

6. Type any required input parameters of the RAD function or JavaScript in the

parameters array.

RAD functions require values in both the Parameter Names and Parameter Values

fields. Each RAD function has its own list of required RAD parameters names. RAD

parameter values are typically system variables such as $L.file or$L.exit. You can

type RAD function parameters in any order.

JavaScript parameters only require the Parameter Values field, but require you to

type them in the same order as the JavaScript function expects them. For example,

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 68 of 242



the buildAllStatus function of the Approval script expects the following parameters

in the following order:

a. record

b. fApprovalDef

c. keepRoleOld

d. keepRoleNew

e. tokens

f. tokenToDescription

7. Click Add to create your custom Web Services action.

Web Services Guide

Publishing Service Manager data using WS API

HP Service Manager (9.40 Codeless) Page 69 of 242



SOAP API
This chapter introduces the SOAP API used in Service Manager.

Web Services Description Language (WSDL)
The W3C describes WSDL in the W3C Note 15 March 2001 as "WSDL is an XML format

for describing network services as a set of endpoints operating on messages containing

either document-oriented or procedure-oriented information. The operations and

messages are described abstractly, and then bound to a concrete network protocol and

message format to define an endpoint. Related concrete endpoints are combined into

abstract endpoints (services). WSDL is extensible to allow description of endpoints and

their messages regardless of what message formats or network protocols are used to

communicate, however, the only bindings described in this document describe how to

use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and MIME." In other words, the

WSDL defines a URL endpoint that publishes objects and methods usable against the

publishing application. These objects and methods can then be used to communicate to

that application.

Basic operations in WSDL files

Each Web Service that HP Service Manager publishes has a set of valid operations that

an administrator can enable or disable for custom Web Services clients. The list of valid

Web Service operations comes from two sources:

l The Document Engine display actions defined for each Service Manager table

l The common operations available to all Web Services

HP Service Manager (9.40 Codeless) Page 70 of 242



The <Operation Name> is the alias name of the Service Manager display option as

defined in the Web Services Configuration Utility. The <Object Name> is the alias

name of the Service Manager table as published in the Web Service. Use a Request

message to send SOAP operations to the Service Manager server. The Service Manager

server uses a Response message to send its reply to the SOAP operation.

You can see the list of available Document Engine display actions for each table in the

extaccess table. The Service Manager server converts each published display action

into a separate <operation> element in the Web Services Definition Language

(WSDL).

For example, the Resolve operation for the Incident object translates to the

ResolveIncidentRequest SOAP message. The Service Manager server replies with a

ResolveIncidentResponse SOAP message. Any custom Web Services client you create

must be able to generate these SOAP message requests and understand the SOAP

message response.

In addition to application-specific display actions, there are common operations

available to all Service Manager Web Services objects. Just as with display options, the

Service Manager server converts each common operation into a separate

<operation> element in the Web Services Definition Language (WSDL). The

following common messages are always available.

l Retrieve<Object>Request – retrieves a single record detail matching the value of

the <keys> element or query attribute, for example an Incident record.

l Retrieve<Object>KeysList – retrieves a list of keys matching the value of query

attribute.

l Retrieve<Object>List – retrieves a list of objects matching the value of query

attribute.

The following common messages but are not always available.

l Update<Object>Request – updates a single record matching the value of the

<keys> element or query attribute with the new values defined in the

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 71 of 242



<instance> element 

l Delete<Object>Request * – deletes a single record matching the value of the

<keys> element

l Create<Object>Request – adds a single record with the values defined in the

<instance> element

* The IncidentManagement Web Service does not offer the delete operation. To retrieve

a single incident record, you can use the RetrieveIncident operation.

For more information about Web Services and WSDL, see the W3C Web site.

Service Manager WSDL files

You can view the Web Services Description Language (WSDL) for any Service Manager

Web Service by navigating to one of the following URLs:

Version URL Supports

Backwards
compatibility for
HP ServiceCenter
6.2 servlet mode

http://<servername>:<port_
number>/sc62server/PWS/<service_
name>.wsdl

MIME
attachments

Service Manager http://<servername>:<port_
number>/SM/7/<service_name>.wsdl

MTOM
attachments

For example, type

http://myserver:13080/SM/7/IncidentManagement.wsdl to view the

Incident Management service WSDL from myserver.

The server also responds to requests with ?WSDL as the file extension. For example,

http://myserver:13080/SM/7/IncidentManagement?wsdl

The Service Manager server automatically generates a WSDL whenever it receives an

HTTP get request for WSDL. Service Manager WSDLs use XML Schema definitions to

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 72 of 242



describe literal Web Services. Service Manager is able to serve two different versions of

the WSDL for a given service:

l HP ServiceCenter 6.2 WSDL files for backwards compatibility. The API described in

these WSDL files is deprecated. See the HP ServiceCenter 6.2 documentation for

more information.

l Service Manager WSDL . New applications should use this WSDL.

Note: To avoid receiving the "Invalid XML schema: Element <xs:import> is not

allowed at this location under element <xs:schema>" error when viewing any

multiple object WSDL (for example, ConfigurationManagement.wsdl), disable the

validation in the SOAP tool you are using before loading the WSDL and creating a

Web Service request.

The XML document which describes a particular Service Manager record (such as a

Change or Incident) is wrapped in an outer document called a "model". The model is

nothing more than a container for separating the actual data (the “instance” part) from

the "keys" part, which is metadata about the fields that make up the primary key of the

object.

Types of Web Services in Service Manager

The types of Web Services supported by Service Manager are as follows:

l Service Manager 7.x URL supporting the W3C Message Transmission Optimization

Mechanism (MTOM) attachments, which is a method of efficiently sending binary

data to and from Web Services. MTOM is usually used with XML-binary Optimized

Packaging (XOP).

http://<SM Server>:<SM port>/SM/7/<service name>.wsdl

Note: AXIS2 supports MTOM.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 73 of 242



l Service Manager 7.x URL supporting Multipurpose Internet Mail Extensions (MIME),

which is an Internet standard that extends the format of email to support MIME

attachments. MIME's use has grown beyond describing the content of email to

describing content type in general, including for the Web.

http://<SM Server>:<SM port>/sc62server/PWS/<service name>.wsdl

Which URL to use depends on the consumer side. You also need to consider whether it

supports MTOM or MIME. For example, Microsoft applications tend to support MIME.

WSDL document structure

A WSDL document is simply a set of definitions. There is a definitions element at the

root and definitions inside. A WSDL document defines services as collections of network

endpoints or ports. In a WSDL document, the abstract definition of endpoints and

messages is separated from their concrete network deployment or data format

bindings. This allows the reuse of abstract definitions: messages, which are abstract

descriptions of the data being exchanged, and port types which are abstract collections

of operations. The concrete protocol and data format specifications for a particular

port type constitutes a reusable binding. A port is defined by associating a network

address with a reusable binding. A collection of ports defines a service.

A WSDL document uses the following elements in the definition of network services:

l Types: a container for data type definitions using some type system (such as XSD).

l Message: an abstract, typed definition of the data being communicated.

l Operation: an abstract description of an action supported by the service.

l Port Type: an abstract set of operations supported by one or more endpoints.

l Binding: a concrete protocol and data format specification for a particular port type.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 74 of 242



l Port: a single endpoint defined as a combination of a binding and a network address.

l Service: a collection of related endpoints.

XML header

The XML header specifies the XML version number, and optionally the character

encodings, as part of a grammar document's XML declaration on the first line of the

document.

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

Namespace definitions

XML namespaces are used for providing uniquely named elements and attributes in an

XML document

The following section of the Service Manager IncidentManagement wsdl shows the

namespace definitions.

- <definitions
targetNamespace="http://servicecenter.peregrine.com/PWS"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:ns="http://servicecenter.peregrine.com/PWS"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.xmlsoap.org/wsdl/

http://schemas.xmlsoap.org/wsdl/">

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 75 of 242

http://en.wikipedia.org/wiki/XML


Operation section

The following section of the example Service Manager IncidentManagement wsdl shows

the operation section used to define each individual action supported by the service.

- <operation name="RetrieveIncident">
<documentation />
<input message="ns:RetrieveIncidentRequest" />
<output message="ns:RetrieveIncidentResponse" />
</operation>
</portType>

Messages section

The following section of the example Service Manager IncidentManagement wsdl shows

the messages section used to define the data being communicated.

- <message name="RetrieveIncidentRequest">
<part element="ns:RetrieveIncidentRequest"
name="RetrieveIncidentRequest" />

</message>
- <message name="RetrieveIncidentResponse">

<part element="ns:RetrieveIncidentResponse"
name="RetrieveIncidentResponse" />

</message>
</message>

Types section

The following section of the example Service Manager IncidentManagement wsdl shows

the definition of the data, including data types, that is being communicated between

the consumer and Service Manager.

- <types>
- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

attributeFormDefault="unqualified"
elementFormDefault="qualified"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 76 of 242



targetNamespace="http://servicecenter.peregrine.com/PWS"
version="2007-04-14 Rev 1"

xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common">

<xs:import
namespace="http://servicecenter.peregrine.com/PWS/Common"

schemaLocation="http://server:13080/sc62server/PWS/Common.xsd"
/>
- <xs:complexType name="IncidentKeysType">
- <xs:sequence>

<xs:element minOccurs="0" name="IncidentID" nillable="true"
type="cmn:StringType" />
</xs:sequence>
<xs:attribute name="query" type="xs:string" use="optional" />
</xs:complexType>

- <xs:complexType name="IncidentInstanceType">
- <xs:sequence>

<xs:element minOccurs="0" name="IncidentID" nillable="true"
type="cmn:StringType" />

- <xs:element minOccurs="0" name="IncidentDescription">
- <xs:complexType>
- <xs:complexContent>
- <xs:extension base="cmn:ArrayType">
- <xs:sequence>

<xs:element maxOccurs="unbounded" minOccurs="0"
name="IncidentDescription" type="cmn:StringType" />

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
</xs:element>

- <xs:complexType name="IncidentModelType">
- <xs:sequence>

<xs:element name="keys" type="IncidentKeysType" />
<xs:element name="instance" type="IncidentInstanceType" />
<xs:element minOccurs="0" name="messages"

type="cmn:MessagesType" />
</xs:sequence>
<xs:attribute name="query" type="xs:string" use="optional" />

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 77 of 242



</xs:complexType>
- <xs:element name="RetrieveIncidentRequest">
- <xs:complexType>
- <xs:sequence>

<xs:element name="model" type="IncidentModelType" />
</xs:sequence>
<xs:attribute name="attachmentInfo" type="xs:boolean"

use="optional" />
<xs:attribute name="attachmentData" type="xs:boolean"

use="optional" />
<xs:attribute default="true" name="ignoreEmptyElements"

type="xs:boolean" use="optional" />
</xs:complexType>
</xs:element>

- <xs:element name="RetrieveIncidentResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="model" type="IncidentModelType" />
<xs:element minOccurs="0" name="messages"

type="cmn:MessagesType" />
</xs:sequence>
<xs:attribute name="status" type="cmn:StatusType"

use="required" />
<xs:attribute name="message" type="xs:string" use="required" />
<xs:attribute name="schemaRevisionDate" type="xs:date"

use="required" />
<xs:attribute name="schemaRevisionLevel" type="xs:int"

use="required" />
<xs:attribute name="returnCode" type="xs:decimal"

use="optional" />
<xs:attribute name="query" type="xs:string" use="optional" />
</xs:complexType>
</xs:element>
</types>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 78 of 242



Nillable attribute

The nillable attribute specifies whether or not an explicit NULL value can be assigned to

the element. True enables an instance of the element to have the NULL attribute set to

true. The NULL attribute is defined as part of the XML Schema namespace for

instances. The default is false. This attribute is optional.

The nillable attribute is analogous to the SQL concept of NULL and is useful for dealing

with the ambiguity that may otherwise surround an empty XML element value. With

SQL there is a difference between a NULL value and a column containing a varchar of

length zero. Similarly, in an XML schema there is a difference between an XML element

containing no text value and one which is explicitly marked with xsi:nil=”true”.

Unless the XML schema indicates that an XML element is nillable, you cannot specify

the nillable attribute for the element.

The following sample code with the nillable attribute can be found in the schema

definition section:

<xs:element minOccurs="0" name="IncidentID" nillable="true"

type="cmn:StringType" />

Port type

The port defines the connection point to a Web Service. The follow section of the

example Service Manager IncidentManagement WSDL shows the port type section,

which includes the set of operations allowed by the endpoint.

- <portType name="IncidentManagement">

Binding section

The following section of the example Service Manager IncidentManagement WSDL

shows the binding section used to define a protocol and defined data formats for a

particular port type.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 79 of 242



- <binding name="IncidentManagement"
type="ns:IncidentManagement">

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />

- <operation name="RetrieveIncident">
<soap:operation soapAction="Retrieve" style="document" />

- <input>
<soap:body use="literal" />
</input>

- <output>
<soap:body use="literal" />
</output>
</operation>

- <operation name="RetrieveIncidentKeysList">
<soap:operation soapAction="RetrieveKeysList" style="document"

/>
- <input>

<soap:body use="literal" />
</input>

- <output>
<soap:body use="literal" />
</output>
</operation>
</binding>

Service section

The Service section describes one or more concrete endpoints where the functionality

of the service can be found.

The follow section of the example Service Manager IncidentManagement WSDL shows

the service section, which is a collection of endpoints (In this example, just

IncidentManagement).

- <service name="IncidentManagement">

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 80 of 242



Port section

The following section of the example Service Manager IncidentManagement WSDL

shows the port section, which is a single endpoint defined as a combination of a binding

and a network address.

- <port binding="ns:IncidentManagement"
name="IncidentManagement">

<soap:address location="http://server:13080/sc62server/ws" />
</port>
</service>
</definitions>

Change example to use the cookie

To change the Keep-Alive example to use the cookie you can modify the following

methods.

The method createService ( ) in IncidentManagementServiceUtility.java file:

public static IncidentManagementStub createService(Map arguments)
throws Exception

{
String host = (String) arguments.get(ARGUMENT_HOST);
String port = (String) arguments.get(ARGUMENT_PORT);
String address = "http://" + host + ":" + port + "/SM/7/ws";
IncidentManagementStub stub = new IncidentManagementStub

(address);

stub._getServiceClient().getOptions().setManageSession(true);
stub._getServiceClient().getOptions().setProperty

(HTTPConstants.REUSE_HTTP_CLIENT,true);
// set connection: close
//Header hdr = new Header(HTTPConstants.HEADER_CONNECTION,

HTTPConstants.HEADER_CONNECTION_CLOSE);
//ArrayList<Header> headers = new ArrayList<Header>();
//headers.add(hdr);

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 81 of 242



//stub._getServiceClient().getOptions().setProperty
(HTTPConstants.HTTP_HEADERS, headers);

stub._getServiceClient().getOptions().setProperty
(Constants.Configuration.ENABLE_MTOM,
Constants.VALUE_TRUE);

ServiceUtility.initServiceAuthentication(stub, arguments);

return stub;
}

The method createIncidents() in CreateIncidentSample.java file:

public void createIncidents() throws Exception, IOException
{

/* Open a port to the Incident Management Web Service */
IncidentManagementStub stub =

IncidentManagementServiceUtility.createService(arguments);
int totalIM = 10;

/* Create details about the new incident */
for (int i = 1; i <= totalIM; i++)
{ 

if (i == totalIM)
{

// close the connection if this is the last request
Header hdr = new Header(HTTPConstants.HEADER_CONNECTION,

HTTPConstants.HEADER_CONNECTION_CLOSE);
ArrayList<Header> headers = new ArrayList<Header>();
headers.add(hdr);
stub._getServiceClient().getOptions().setProperty

(HTTPConstants.HTTP_HEADERS, headers);
}

createIncident(stub);
}

return;
}

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 82 of 242



The client is responsible for echoing back this value in a Cookie header in all subsequent

POST requests. If the client fails to do this, the servlet container will quickly run out of

sessions.

If a client request causes any Service Manager Server error or exception then this

session will be terminated by the Service Manager Server. Once this happens the

current JSESSIONID becomes invalid and a new JSESSIONID will be returned on the

following client request. The SOAP client should echo back the new JSESSIONID for the

subsequent requests to avoid the user login/logout overhead and dangling sessions

saturation.

Verify the WSDL to JS output

Generated JavaScript must end with

// Ensure that material in lib.SOAP is available

lib.SOAP.init();

/// End ----------------

All defined types and operations must be represented by a function such as

this.SOAPOperations[ "UpdateIncident" ] = new soap_Operation( 
"UpdateIncident", "Update", "document", "UpdateIncidentRequest",
"UpdateIncidentResponse" );

function UpdateIncidentRequest( )

Or -

this.ProductType= new StringType();

•functionStringType( val)

If any of these definitions are missing, report this to customer support with an unload

of the generated JavaScript, the WSDL in text format, and all imported xsd files.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 83 of 242



Example using Keep-Alive with .Net Web Services

Studio

To use Keep-Alive with .Net Web Services Studio, perform the following actions.

First set the following:

l set "AllowWriteStreamBuffering" to True

l set "BasicAuthUsername" to falcon

l set "KeepAlive" to True

l set "UserCookieContainer" to True

Execute a RetrieveIncident action and search for the incident with the number

IM1001.

l When you click Send, the "Set-Cookie" and "Connection" headers can be seen in the

response window.

l Click Send again, only the "Connection" header can be seen in the response.

In the sm.log, these two requests (one per send) will belong to one session, meaning

they have the same Process ID (Thread ID) combination.

2052( 6096) 05/05/2008 15:30:31 RTE I Using "utalloc" memory
manager

2052( 6096) 05/05/2008 15:30:31 RTE I Process sm 7.01.048
System: 13080 (0x784dfb00) on PC running Windows
XP Professional (5.1 Build 2600) from server (127.0.0.1)

2052( 6096) 05/05/2008 15:30:31 RTE I Connected to SOAP
client

at 127.0.0.1
2052( 6096) 05/05/2008 15:30:31

RTE I Attaching to resources with key 0x784dfb00
2052( 6096) 05/05/2008 15:30:31

RTE I Info: SQL State: 01000-5701

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 84 of 242



Message: [Microsoft][SQL Native Client][SQL Server]Changed
database

context to 'sm701'.
2052( 6096) 05/05/2008 15:30:31 RTE I Info: SQL State: 01000-

5703
Message: [Microsoft][SQL Native Client][SQL Server]Changed

language setting
to us_english.

2052( 6096) 05/05/2008 15:30:31 RTE I sqmssqlExec info
statement= SQL CONNECT

2052( 6096) 05/05/2008 15:30:31 RTE I Connection established
to

dbtype 'sqlserver' database 'sm701' user 'sm7'
2052( 6096) 05/05/2008 15:30:31 RTE I Connected to Data

source
'sm701' SQL server 'server\SQLEXPRESS' version: 9.0.3042
Using database 'sm701' as user 'sm7'

2052( 6096) 05/05/2008 15:30:31 RTE I MS SQL Server collation
'Latin1_General_BIN', varchar codepage 1252, comparison 0:
case sensitive, accent sensitive

2052( 6096) 05/05/2008 15:30:31 RTE I Thread
912DAAD51D1B0A53B251147F6665B7EE initialization done.

First execution of .Net Web Services Studio

The following code shows an example of the first execution of code when using Keep-

Alive with .Net Web Services Studio.

2052( 6096) 05/05/2008 15:30:31 RTE D Parsing request
document:
<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soap:Body>
<RetrieveIncidentRequest

xmlns="http://servicecenter.peregrine.com/PWS">
<model query="">

<keys query="">

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 85 of 242



<IncidentID/>
</keys>
<instance query="" recordid="" uniquequery="">

<IncidentID>IM1001</IncidentID>
</instance>
<messages>

<message xmlns="http://sc62server/PWS/Common"
module=""/>

</messages>
</model>

</RetrieveIncidentRequest>
</soap:Body>

</soap:Envelope>
2052( 6096) 05/05/2008 15:30:31 RTE D Done parsing request

document
2052( 6096) 05/05/2008 15:30:31 RTE D doCardinalOperation

entered for
SOA Mode 2 operation 1 - Retrieve

2052( 6096) 05/05/2008 15:30:31 RTE D Calling
loginAuthenticate

with user=falcon and password=########
2052( 6096) 05/05/2008 15:30:31 RTE D Authentication

succeeded
2052( 6096) 05/05/2008 15:30:31 RTE D Calling agend()
2052( 6096) 05/05/2008 15:30:31 RTE D Calling agstart()
2052( 6096) 05/05/2008 15:30:31 RTE D Calling login with

user=falcon
and password=########

2052( 6096) 05/05/2008 15:30:32 RTE I User falcon logged in.
Already licensed

2052( 6096) 05/05/2008 15:30:32 RTE D Login succeeded
2052( 6096) 05/05/2008 15:30:32 RTE D Setting uname to falcon
2052( 6096) 05/05/2008 15:30:32 RTE D Operation will be

carried out on
file probsummary

2052( 6096) 05/05/2008 15:30:32 RTE D doQuery using query
string

number="IM1001"
2052( 6096) 05/05/2008 15:30:33 RTE D doGet query returned 1

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 86 of 242



2052( 6096) 05/05/2008 15:30:33 RTE D SOA revision time is
2005-03-15

2052( 6096) 05/05/2008 15:30:33 RTE D SOA revision level is 0

Second execution of .Net Web Services Studio

The following code shows an example of the second execution of code when using Keep-

Alive with .Net Web Services Studio.

2052( 6096) 05/05/2008 15:33:40 RTE D Parsing request
document:

<?xml version="1.0" encoding="utf-8"?><soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soap:Body>
<RetrieveIncidentRequest

xmlns="http://servicecenter.peregrine.com/PWS">
<model query="">

<keys query="">
<IncidentID/>

</keys>
<instance query="" recordid="" uniquequery="">

<IncidentID>IM1001</IncidentID>
</instance>
<messages>

<message
xmlns="http://servicecenter.peregrine.com/PWS/Common"

module=""/>
</messages>

</model>
</RetrieveIncidentRequest>

</soap:Body>
</soap:Envelope>

2052( 6096) 05/05/2008 15:33:40 RTE D Done parsing request
document

2052( 6096) 05/05/2008 15:33:40 RTE D doCardinalOperation
entered for

SOA Mode 2 operation 1 - Retrieve

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 87 of 242



2052( 6096) 05/05/2008 15:33:40 RTE D User falcon is already
logged

in for this process - skipping login processing
2052( 6096) 05/05/2008 15:33:40 RTE D Operation will be

carried out
on file probsummary

2052( 6096) 05/05/2008 15:33:40 RTE D doQuery using query
string

number="IM1001"
2052( 6096) 05/05/2008 15:33:40 RTE D doGet query returned 1
2052( 6096) 05/05/2008 15:33:41 RTE D SOA revision time is

2005-03-15
2052( 6096) 05/05/2008 15:33:41 RTE D SOA revision level is 0

Consuming a Service Manager Web Service
A Service Manager Web service can be consumed by a custom client or by an

application that directly consumes Web Services, such as Service Manager or Connect-

It.

General Information

A Web Service development tool kit that can generate a complete Web service

application from a .wsdl file is required to create a custom client that can access the

Service Manager Web service. A good understanding of Web Services and SOAP versions

1.1 or 1.2 is also recommended.

Note: Service Manager users and application designers can choose any third-party

Web Services development tool kit. However, Service Manager publishes only the

WSDL files for the Web Service. Troubleshooting the client application is the

responsibility of the application developer, and outside the scope of Service

Manager Customer Support.

Use the steps below as a guide to create your custom Web Service client.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 88 of 242



1. Publish the Service Manager tables that you want your client to access. You can use

the Service Manager Web Services out-of-the-box or customize the extaccess

records to meet your needs.

2. Obtain a Web Services client development tool that can create a complete Web

Service application, such as Microsoft .NET or Apache Axis, or obtain a tool that

generates a complete Web Service application by evaluating the target WSDL file.

3. Browse to the URL of your Service Manager server and download the WSDL files for

the services you want your custom clients to use. Use your Web Services client

development tool to browse the WSDL and determine which features you want your

custom client to use. The URL of your server must include the port and the Web

service name.

For example:

http://<Service Manager server>:<httpPort (use a dedicated port, do not use

loadBalancer port)>/SM/7/PWS/IncidentManagement.wsdl connects to the Service

Manager server host on the specified port and requests the IncidentManagement

WSDL.

4. Use your Web Services client development tool to generate the programming

language client code (classes) that will invoke the Service Manager Web services.

Tools such as .NET wsdl.exe or Axis wsdl2java generate client code that can be

used to invoke the Service Manager Web service from the WSDL. Your custom Web

Services client invokes the client code rather than the WSDL directly.

5. Write a client application in the appropriate language of your client development

tool. For example, .NET requires either Microsoft Visual C# or Visual Basic®, and

Axis requires Java.

Dynamic and static Web Services clients

Tools such as Visual Studio or .NET allow for simple creation of Web Service clients from

a WSDL. These clients are static Web Service consumers and have to be rebuilt every

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 89 of 242



time the WSDL changes. To get around the tedious work of rebuilding the client code for

every WSDL change (new fields, new methods, new objects), you can create dynamic

Web Services clients. These clients read the WSDL each time they use it and

dynamically refer to the objects and methods within.

When an external client consumes Service Manager data, the client code can be written

for dynamic or static WSDL consumption. When Service Manager consumes external

data, it uses static consumption always.

What happens if an exposed table is changed?

The WSDL for a service does not change automatically as a result of making tailoring

changes such as adding a new field to a table. Only if you include the new field in the

Web Services API by adding it to the extaccess record will the new field be exposed.

If you change the caption (alias name) by which a field is exposed in a Web Service, you

are going to have to modify and recompile any SOAP client applications which reference

this field. You can rename the internal Service Manager field names, even for fields

which are exposed via Web Services, without impacting deployed Web Services, as long

as you do not change the alias name by which the field is known to Web Services.

Finally, if you add a new field, make the new field a required field and you have

previously deployed Web Services applications which do not populate this field, you

must provide tailoring in the server to generate a valid default value for the field when

a value is not provided. Otherwise, inserts and updates via Web Services will fail

because the new field has not been populated when the record goes through validation.

Updating Service Manager tables

By design, the Service Manager server expects that the client application will specify

only those fields to be updated. It ignores missing or empty elements in the update

request. If you specify a new value to update a field and that field is an array, ensure

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 90 of 242



that you match the number of new values for the array elements to the number of

existing array elements; otherwise, the number of elements in the array will

dynamically resize to contain only the new values.

You can code a global attribute on the request element called ignoreEmptyElements

and set it to true or false. If you specify ignoreEmptyElements=false, any missing or

empty element in the update request causes the named field to be cleared to null

values.

If you want to clear a specific field, specify xsi:nil=true as an element attribute.

Requirements for developing customWeb

Services clients

You can create custom Web Services clients to access the HP Service Manager Web

Services API. If you choose to create a custom Web Services client, ensure that you

review the statement of technical support for custom Web Services clients, and that

you have the following skills and tools:

l A good understanding of the W3C recommendation for SOAP version 1.1 or 1.2.

Service Manager supports both versions, but recommends SOAP version 1.2.

l A Web Service development tool kit that can generate a complete Web service

application from a .wsdl file.

l Familiarity with the debughttp server parameter and the HTTP.LOG it generates.

Note: There are several Web services development tool kits that you can use to

develop custom Web Services clients, such as Microsoft Visual Studio .NET™,

Systinet WASP™, Glue™, Apache Axis™, or Sun Web Services Developer Pack™.

In order to support custom Web Services client connections to Service Manager you

need:

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 91 of 242



l An installed Service Manager server instance (Your custom Web services clients can

connect to the normal server listener port)

l A list of the Service Manager tables and actions you want to permit access to (you

can grant or deny access from the extaccess table)

Checklist: Creating a customWeb Services client

You can create custom Web Services client applications to connect and conduct

transactions with the HP Service Manager Web service. Any custom clients you create

must be able to send and receive from the Service Manager server valid SOAP

messages.

1. Publish the Service Manager tables to which you want the custom client to connect

as Web Services. You can use Service Manager Web Services API out-of-the-box, or

customize the Web Services to meet your business needs.

2. Obtain a Web Services client development tool that can create a complete Web

service application, such as Microsoft .NET™ or Apache Axis™, or obtain a tool that

generates a complete Web Service application by evaluating the target WSDL file,

such as GotDotNet™ WebServiceStudio™.

3. Browse to the URL of your Service Manager server and download the WSDL files for

the services you want your custom clients to use. Use your Web Services client

development tool to browse the WSDL and determine which features you want your

custom client to use.

Note: The URL of your server must include the listener port and the Web

service name. For example, http://smserver:13081/IncidentManagement.wsdl

connects to the smserver host on port 13081 and requests the

IncidentManagement WSDL.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 92 of 242



Caution: Do not use the Load Balancer listener port for all incoming Web

Services requests. Instead, dedicate one or more Service Manager server

processes to serve Web Services requests by adding the "debugnode"

parameter to the process you wish to dedicate to serve Web Services requests.

4. Use your Web Services client development tool to generate the programming

language client code that invokes the Service Manager Web Services for the Service

Manager Web Services. Tools such as .NET wsdl.exe or Axis wsdl2java can generate

client code that can be used to invoke the Service Manager Web Service from the

WSDL.

5. Write a client application in the appropriate language of your client development

tool. For example, .NET requires Microsoft C#™ or Visual Basic™; Axis requires

Java.

Tip: The HP Service Manager installation DVD contains source code for several

sample Web Services client applications you can use as templates for your own

custom clients. The source code includes Axis and .NET examples.

Note: There are many Web Service application development tools available

such as Microsoft Visual Studio .NET™, Systinet WASP™, Glue™, Apache Axis™,

or Sun Web Services Developer Pack™. Service Manager users and application

designers can choose any third-party tool with the understanding that HP

publishes only the WSDL files for the web service. Troubleshooting the client

application is the responsibility of the application developer, and outside the

scope of Service Manager Customer Support.

Technical support for customWeb Services clients

Custom Web Services clients and any code or scripting that you add to interface with

the HP Service Manager products are outside the scope of the HP product suite and are

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 93 of 242



not covered under maintenance and support contracts. Ensure that you have full access

to the appropriate resources to assist you with training, debugging, and maintaining

any code that you add to your Service Manager environment.

HP provides a working example database and several sample Web Services clients that

can help you troubleshoot your custom clients and determine where errors occur.

Sample Web Services client for sc62server PWS

URL

The HP Service Manager server includes two sample Web Services client applications

for the http://servername:port_number/sc62server/PWS/service_

name.wsdl. One was created for Apache™ Axis and the other for Microsoft™ Visual

Studio .NET. If you have one of these two Web Services development tools installed, you

can review and update the source code of the sample applications as well as generate

updated proxy code to test the Service Manager Web Services functionality. The Apache

Axis samples are written in Java while the Microsoft .NET samples are written in C#.

The sample client applications are included with the server installation in the following

folders:

l <Service Manager server installation folder>\webservices\sample\sc62webservices

n AxisSample

n DotNetSample

Each sample includes the source code for the client applications as well as support files

for the Web Services development environment. The Apache Axis sample also includes

a library of Axis jar files as well as batch files that you can use to run each class from

the Windows command prompt after you have compiled the sample Java. You can use

the sample applications as examples of how to create your own custom Web Services

client applications.

Note: All the sample applications use a command line interface. To see the usage

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 94 of 242



information for the command line interface, type: dotNetSample -example

ClassName where ClassName is the name of the sample application class.

The Apache Axis sample client applications assume that you have a Service Manager

server instance running from the local host. If this is not the case, you can change the

server host name and port number using the sample's command line interface.

The Microsoft .Net sample client applications assume that you have a Service Manager

server instance running from the local host. If this is not the case, you can change the

server host name and port number using the sample's command line interface or from

Visual Studio .NET's Web reference URL.

Caution: To use attachments with .Net samples, you must install Microsoft Web

Services Enhancements (WSE) 2.0 SP2. Be sure to select the "Visual Studio

Developer" option during installation. If you add WSE2 after building the examples,

you must delete the old reference files ("reference.cs" and "reference.map"),

update the web references, and then rebuild the sample applications.

Each of the sample folders includes a readme file that contains valuable information

about using the sample application found in each of the sample folder.

Configuration Management sample

The sample client applications contain the following classes for Configuration

Management. Refer to the sample application source code for comments on the usage

of each class. 

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 95 of 242



Field Description

ConfigurationManagementServiceUtility l Provides the CreateService method to
initialize an object for the service.

l Provides the InitServiceAuthentication
method to send the host name,
communications port, operator name,
and operator password with each SOAP
request.

l Provides the InitServiceforAttachments
method to initialize the service to
handle MIME attachments.

CreateContactSample Creates a contact record with the supplied
parameters.

DeleteContactSample Deletes the contact record listed in the
supplied parameters.

RetrieveContactSample Retrieves a single contact record matching
the supplied parameters.

UpdateContactSample Updates a contact record with the supplied
parameters.

Incident Management sample

The sample client applications contain the following classes for Incident Management.

Refer to the sample application source code for comments on the usage of each class.

Class Description

CloseIncidentSample Closes an incident record with the supplied
parameters.

CreateIncidentSample Creates an incident record with the supplied
parameters.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 96 of 242



Class Description

IncidentManagementServiceUtility l Provides the CreateService method to
initialize an object for the service.

l Provides the InitServiceAuthentication
method to send the host name,
communications port, operator name, and
operator password with each SOAP request.

l Provides the InitServiceforAttachments
method to initialize the service to handle
MIME attachments.

ResolveIncidentSample Resolves an incident record matching the
supplied parameters.

RetrieveIncidentListSample Retrieves multiple incident records matching
the supplied parameters.

RetrieveIncidentSample Retrieves a single incident record matching the
supplied parameters.

UpdateIncidentSample Updates an incident record with the supplied
parameters.

Command line arguments for the .NET samples

The .NET sample application runs from the Windows command prompt. After you have

compiled the .NET sample into an executable, you can perform configuration and

incident management tasks with the following arguments.

Note: To see the usage information for the .NET sample application, type

dotNetSample -example ClassName where ClassName is the name of a

sample application class.

The following commands invoke Configuration Management functionality.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 97 of 242



Operation Command-line example

Create
contact

dotnetsample -example CreateContact -name sneveau -lastName
Neveau -firstName Sophie -workPhone "(858) 481-5000" -extension
3573 -fullname "Sophie Neveau"

Delete
contact

dotNetSample -example DeleteContact -name sneveau -lastName
Neveau -firstName Sophie

Retrieve
contact

dotNetSample -example RetrieveContact -name "FALCON, JENNIFER"

Update
Contact

dotNetSample -example UpdateContact -name "FALCON, JENNIFER" -
workPhone "(858) 481-5000" -extension 3573

The following commands invoke Incident Management functionality.

Operation Command-line example

Close
incident

dotNetSample -example CloseIncident -incidentId IM10001 -closeCode
"User Closer" -resolution "Problem disappeared"

Create
incident

dotNetSample -example CreateIncident -title ".NET sample brief
description" -category incident -problemType "not specified" -
description ".NET sample incident" -severity 1 -subCategory data -
productType "storage limit exceeded" -initialImpact 1 -
primaryAssignmentGroup "Operating System Support (South America)" -
service "Printing (Africa)"

Resolve
incident

dotNetSample -example ResolveIncident -incidentId IM10006 -
resolution "Problem disappeared"

Retrieve
incident
list

dotNetSample -example RetrieveIncidentList -incidentId
IM10001:IM10002

Retrieve
incident

dotNetSample -example RetrieveIncident -incidentId IM10001

Update
incident

dotNetSample -example UpdateIncident -incidentId IM10006 -
journalUpdates "User provided more information"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 98 of 242



Command line arguments for the Axis sample

application

The Axis sample application runs from the command prompt using Java. After you have

compiled the Axis sample into an executable class file, you can perform configuration

and incident management tasks with the following arguments.

Note: To see the usage information for the Axis sample application, type

ClassName where ClassName is the name of a sample application class.

Configuration Management

The following commands invoke Configuration Management functionality. These

examples assume you are using the batch files provided with the Axis sample

application to automatically set the class path and call the proper executable class.

Operation Command-line example

Create contact CreateContactSample -name sneveau -fullname "Sophie Neveau"

Delete contact DeleteContactSample -username falcon -name "sneveau"

Retrieve contact RetrieveContactSample -name "FALCON, JENNIFER"

Update Contact UpdateContactSample -name "FALCON, JENNIFER"

Incident Management

The following commands invoke Incident Management functionality. These examples

assume you are using the batch files provided with the Axis sample application to

automatically set the class path and call the proper executable class.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 99 of 242



Operation Command-line example

Close
incident

CloseIncidentSample -incidentId IM10001 -closeCode "User Closer" -
resolution "Problem disappeared"

Create
incident

CreateIncidentSample -briefDescription "Java sample brief description" -
category incident -incidentDescription "This is a description" -severity 1
-subCategory hardware -productType "missing or stolen" -initialImpact 1
-service Applications -primaryAssignmentGroup Network

Resolve
incident

ResolveIncidentSample -incidentId IM10006 -resolution "Problem
disappeared"

Retrieve
incident
list

RetrieveIncidentListSample -incidentId IM10001:IM10002

Retrieve
incident

RetrieveIncidentSample -incidentId IM1001

Update
incident

UpdateIncidentSample -incidentId IM10006 -journalUpdates "User
provided more information"

Using query syntax

As shown in the example above, Service Manager supports queries using a special query

syntax with special characters such as # ("starts with"), or relational operators such as

> or < preceding an actual data value. With Web Services this syntax is available for

string data as well. If the field is of a type other than string (for example an integer or

dateTime type) and you are using a strongly typed programming language such as Java

or C# to write your client code, you will not be able to leverage this feature, since the

special characters would not be acceptable data types for these fields. To generate

queries with this syntax on all types of fields, fill in the query=”xxx” section as shown

below.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 100 of 242



The request

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:RetrieveIncidentKeysListRequest attachmentInfo="?"
attachmentData="?" ignoreEmptyElements="true">

<pws:model query="">
<pws:keys query=" update.time>'05/01/08'">

<pws:IncidentID type="String" mandatory="?"
readonly="?">

</pws:IncidentID>
</pws:keys>
<pws:instance query=" " uniquequery="?" recordid="?">

<pws:IncidentID type="String" mandatory="?"
readonly="?">

</pws:IncidentID>
<pws:Category type="String" mandatory="?"

readonly="?">
</pws:Category>
<pws:OpenTime type="DateTime" mandatory="?"

readonly="?">
</pws:OpenTime>
<pws:OpenedBy type="String" mandatory="?"

readonly="?">
</pws:OpenedBy>
<pws:severity type="String" mandatory="?"

readonly="?">
</pws:severity>
<pws:UpdatedTime type="DateTime" mandatory="?"
readonly="?"></pws:UpdatedTime>

<pws:PrimaryAssignmentGroup type="String"
mandatory="?"

readonly="?"></pws:PrimaryAssignmentGroup>
<pws:ClosedTime type="DateTime" mandatory="?"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 101 of 242



readonly="?"></pws:ClosedTime>
<pws:ClosedBy type="String" mandatory="?"

readonly="?">
</pws:ClosedBy>
<pws:ClosureCode type="String" mandatory="?"

readonly="?">
</pws:ClosureCode>
<pws:ConfigurationItem type="String" mandatory="?"
readonly="?"></pws:ConfigurationItem>

<pws:Location type="String" mandatory="?"
readonly="?">

</pws:Location>
<pws:IncidentDescription type="Array">

<pws:IncidentDescription type="String"
mandatory="?"

readonly="?"></pws:IncidentDescription>
</pws:IncidentDescription>
<pws:Resolution type="Array">

<pws:Resolution type="String" mandatory="?"
readonly="?"></pws:Resolution>

</pws:Resolution>
<pws:AssigneeName type="String" mandatory="?"

readonly="?">
</pws:AssigneeName>
<pws:Contact type="String" mandatory="?"

readonly="?">
</pws:Contact>
<pws:JournalUpdates type="Array">

<pws:JournalUpdates type="String" mandatory="?"
readonly="?"></pws:JournalUpdates>

</pws:JournalUpdates>
<pws:AlertStatus type="String" mandatory="?"

readonly="?">
</pws:AlertStatus>
<pws:ContactLastName type="String" mandatory="?"
readonly="?"></pws:ContactLastName>

<pws:ContactFirstName type="String" mandatory="?"
readonly="?"></pws:ContactFirstName>

<pws:Company type="String" mandatory="?"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 102 of 242



readonly="?">
</pws:Company>
<pws:BriefDescription type="String" mandatory="?"
readonly="?"></pws:BriefDescription>

<pws:TicketOwner type="String" mandatory="?"
readonly="?">

</pws:TicketOwner>
<pws:UpdatedBy type="String" mandatory="?"

readonly="?">
</pws:UpdatedBy>
<pws:IMTicketStatus type="String" mandatory="?"
readonly="?"></pws:IMTicketStatus>

<pws:Subcategory type="String" mandatory="?"
readonly="?">

</pws:Subcategory>
<pws:SLAAgreementID type="Decimal" mandatory="?"
readonly="?"></pws:SLAAgreementID>

<pws:SiteCategory type="String" mandatory="?"
readonly="?">

</pws:SiteCategory>
<pws:ProductType type="String" mandatory="?"

readonly="?">
</pws:ProductType>
<pws:ProblemType type="String" mandatory="?"

readonly="?">
</pws:ProblemType>
<pws:ResolutionFixType type="String" mandatory="?"
readonly="?"></pws:ResolutionFixType>

<pws:UserPriority type="String" mandatory="?"
readonly="?">

</pws:UserPriority>
<pws:Solution type="Array">

<pws:Solution type="String" mandatory="?"
readonly="?">

</pws:Solution>
</pws:Solution>
<pws:InitialImpact type="String" mandatory="?"
readonly="?"></pws:InitialImpact>

<pws:folder type="String" mandatory="?"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 103 of 242



readonly="?">
</pws:folder>

</pws:instance>
<pws:messages>

<com:message type="String" mandatory="?"
readonly="?" severity="?"

module="?">?</com:message>
</pws:messages>

</pws:model>
</pws:RetrieveIncidentKeysListRequest>

</soapenv:Body>
</soapenv:Envelope>

The response

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<RetrieveIncidentKeysListResponse message="Success"
query="" returnCode="0" schemaRevisionDate="2007-04-14"
schemaRevisionLevel="1" status="SUCCESS"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS
http://<sm

server>.americas.hpqcorp.net:13701/sc62server/ws/
Incident.xsd"
xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<keys>
<IncidentID type="String">IM10055</IncidentID>

</keys>
<keys>

<IncidentID type="String">IM10063</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10070</IncidentID>
</keys>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 104 of 242



<keys>
<IncidentID type="String">IM10077</IncidentID>

</keys>
<keys>

<IncidentID type="String">IM10090</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10115</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10116</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10117</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10118</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10119</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10120</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10121</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10122</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10123</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10124</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10125</IncidentID>
</keys>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 105 of 242



</RetrieveIncidentKeysListResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Note: The field names in such directly entered query strings reflect either the

actual field names (such as update.time) or the Caption (such as UpdateTime).

Clients who want to submit an expert/advanced query should use either the query

attribute on the <keys> element or the query attribute on the <instance> element.

Both are provided because some requests do not define any <instance> element.

During SOAP API request processing, the server will look first at the <keys>

element and, if there is no query attribute there, will look at the <instance>

element. Query attributes defined on any other element are never consulted during

inbound SOAP request processing.

Retrieving data from Service Manager

Retrieval methods are not defined in the extaccess record. The following list shows the

methods for retrieval that are available and under which circumstances to use each

one:

• Retrieve<FileName> — Used if only one record will be returned. Throws a fault if

multiple records are returned.

• Retrieve<FileName>KeysList — Retrieves the list of unique keys (which does

not have to be the unique key of the Service Manager dbdicts). The list can either be

passed as an array to the Retrieve<FileName>List method, or looped through to

pass to the Retrieve<FileName> method.

• Retrieve<FileName>List — Retrieves a list of records with information that was

gathered either in the Retrieve<FileName>KeysList method or by passing in a

query directly through the instance block. This method expects an array of keys unless

the query approach is used.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 106 of 242



Note: When retrieving data from a single table rather than a Service such as the

contacts table, request the WSDL for the alias name defined in extaccess, such as

"Contact" (singular form, upper-case “C”) rather than for contacts (the actual file

name).

There are different approaches to retrieving a list of records. When developing a

custom client there are actually two separate methods that can be used to retrieve list

data.

The first approach uses the following steps:

1. Send the data query (such as <open.time>&gt;6/30/05</open.time>) to the

RetrieveKeysList method.

2. The result is a list of records where each record contains only the “primary key”

(such as Incident ID) for those records that match the query.

3. You can either provide the list to the RetrieveList method and receive all

records defined by the list in a single XML document, or loop through the list, one

record at a time, calling Retrieve once for each record by key.

The second approach uses these steps:

1. Send the data query (such as <open.time>&gt;6/30/05</open.time>)

directly to the RetrieveList method. Place the query in the “<instance>” block

instead of the “<keys>” block.

2. This single method call returns the entire result set (all fields for all records

matching the query) in a single XML response.

Note: The second approach returns the entire query result set in one method call. If

the result set is large, use the first approach to increase performance.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 107 of 242



Example: Retreiving data from Service Manager

via a Web service

The simplest way to perform retrieval operations is via Query-by-example (QBE). This

is done by creating an instance of a particular kind of object (such as an Incident) and

populating one or more fields with values to determine the result set. You have to only

supply values for the fields on which you wish to select.

The instance is then passed into a RetrieveXXXKeysList request. In a program, such as

the sample programs provided with Service Manager, you would be assigning values to

properties or calling setter methods on various Java or C# or other objects. In the

following example, we submit a RetrieveIncidentKeysList object, supplying a value for

OpenedBy and UpdatedBy. In this example, we will use Service Manager query syntax to

find all incidents where the OpenedBy element starts with “fal” as well as pass a literal

value for the UpdatedBy field.

We get back a RetrieveIncidentKeysListResponse object listing the primary keys of the

matching Incident objects.

Combining multiple values in this QBE style selection connects the query terms with

AND. To create a query using OR, supply an expert query as a string in the

<pws:instance query="xxx" …> area.

The request

<?xml version="1.0" encoding="UTF-8" ?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:RetrieveIncidentKeysListRequest attachmentInfo="?"
attachmentData="?" ignoreEmptyElements="true">

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 108 of 242



<pws:model query="">
<pws:keys query="">

<pws:IncidentID type="String" mandatory="?"
readonly="?">

</pws:IncidentID>
</pws:keys>
<pws:instance query="" uniquequery="?" recordid="?">

<pws:IncidentID type="String" mandatory="?"
readonly="?">

</pws:IncidentID>
<pws:Category type="String" mandatory="?"

readonly="?">
</pws:Category>
<pws:OpenTime type="DateTime" mandatory="?"

readonly="?">
</pws:OpenTime>
<pws:OpenedBy type="String" mandatory="?"

readonly="?">#fal
</pws:OpenedBy>
<pws:severity type="String" mandatory="?"

readonly="?">
</pws:severity>
<pws:UpdatedTime type="DateTime" mandatory="?"
readonly="?"></pws:UpdatedTime>
<pws:PrimaryAssignmentGroup type="String"

mandatory="?"
readonly="?"></pws:PrimaryAssignmentGroup>
<pws:ClosedTime type="DateTime" mandatory="?"

readonly="?">
</pws:ClosedTime>
<pws:ClosedBy type="String" mandatory="?"

readonly="?">
</pws:ClosedBy>
<pws:ClosureCode type="String" mandatory="?"

readonly="?">
</pws:ClosureCode>
<pws:ConfigurationItem type="String" mandatory="?"
readonly="?"></pws:ConfigurationItem>
<pws:Location type="String" mandatory="?"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 109 of 242



readonly="?">
</pws:Location>
<pws:IncidentDescription type="Array">

<pws:IncidentDescription type="String"
mandatory="?"

readonly="?"></pws:IncidentDescription>
</pws:IncidentDescription>
<pws:Resolution type="Array">

<pws:Resolution type="String" mandatory="?"
readonly="?"></pws:Resolution>

</pws:Resolution>
<pws:AssigneeName type="String" mandatory="?"

readonly="?">
</pws:AssigneeName>
<pws:Contact type="String" mandatory="?"

readonly="?">
</pws:Contact>
<pws:JournalUpdates type="Array">

<pws:JournalUpdates type="String" mandatory="?"
readonly="?"></pws:JournalUpdates>

</pws:JournalUpdates>
<pws:AlertStatus type="String" mandatory="?"

readonly="?">
</pws:AlertStatus>
<pws:ContactLastName type="String" mandatory="?"
readonly="?"></pws:ContactLastName>
<pws:ContactFirstName type="String" mandatory="?"
readonly="?"></pws:ContactFirstName>
<pws:Company type="String" mandatory="?"

readonly="?">
</pws:Company>
<pws:BriefDescription type="String" mandatory="?"
readonly="?"></pws:BriefDescription>
<pws:TicketOwner type="String" mandatory="?"

readonly="?">
</pws:TicketOwner>
<pws:UpdatedBy type="String" mandatory="?"
readonly="?">falcon</pws:UpdatedBy>
<pws:IMTicketStatus type="String" mandatory="?"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 110 of 242



readonly="?"></pws:IMTicketStatus>
<pws:Subcategory type="String" mandatory="?"

readonly="?">
</pws:Subcategory>
<pws:SLAAgreementID type="Decimal" mandatory="?"
readonly="?"></pws:SLAAgreementID>
<pws:SiteCategory type="String" mandatory="?"

readonly="?">
</pws:SiteCategory>
<pws:ProductType type="String" mandatory="?"

readonly="?">
</pws:ProductType>
<pws:ProblemType type="String" mandatory="?"

readonly="?">
</pws:ProblemType>
<pws:ResolutionFixType type="String" mandatory="?"
readonly="?"></pws:ResolutionFixType>
<pws:UserPriority type="String" mandatory="?"

readonly="?">
</pws:UserPriority>
<pws:Solution type="Array">

<pws:Solution type="String" mandatory="?"
readonly="?">

</pws:Solution>
</pws:Solution>
<pws:InitialImpact type="String" mandatory="?"

readonly="?"></pws:InitialImpact>
<pws:folder type="String" mandatory="?"

readonly="?">
</pws:folder>

</pws:instance>
<pws:messages>

<com:message type="String" mandatory="?"
readonly="?"

severity="?" module="?">?</com:message>
</pws:messages>

</pws:model>
</pws:RetrieveIncidentKeysListRequest>

</soapenv:Envelope>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 111 of 242



The response

<?xml version="1.0" encoding="utf-16"?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>
<RetrieveIncidentKeysListResponse message="Success"

query=""
returnCode="0" schemaRevisionDate="2007-04-14"
schemaRevisionLevel="1" status="SUCCESS"
xsi:schemaLocation="http://servicecenter.peregrine.com/PWS
http://<sm

server>.americas.hpqcorp.net:13701/sc62server/ws/
Incident.xsd"

xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<keys>
<IncidentID type="String">IM10001</IncidentID>

</keys>
<keys>

<IncidentID type="String">IM10004</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10009</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10016</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10027</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10038</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10049</IncidentID>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 112 of 242



</keys>
<keys>

<IncidentID type="String">IM10060</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10061</IncidentID>
</keys>

</RetrieveIncidentKeysListResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Having retrieved a list of <keys> elements we can now retrieve these Incidents using a

RetrieveIncidentList request, by supplying the collection of keys elements in that

request.

You can submit a variable number of <keys> elements in a RetrieveXXXList request,

subject only to your program’s ability to handle large XML responses. Java client

programs can sometimes run out of memory if the server returns very large responses.

To help prevent the RetrieveXXXListRequest Web Service from causing a Java Heap

Space out-of-memory error when retrieving a list of records, the following applies for

the response of a RetrieveXXXList request:

l When there is neither a start attribute nor a count attribute, return all records/keys.

l When there is a valid start value but no count attribute, return all records starting

from the start attribute.

l When there is a valid start attribute and valid count attribute, return the number of

keys/records starting from the start attribute.

l When there is a negative start attribute, return from the first record.

l When there is a negative count attribute, return one record.

l When the start attribute is bigger than the total number of records/keys, no record

is returned.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 113 of 242



Retrieve data from Service Manager using

Pagination

Retrieving a list of data objects may result in a very large XML response document that

could cause performance and memory utilization issues either on the client or the

server. To avoid these problems, Service Manager supports the use of pagination, the

process of returning pages of data instead of one large response.

To enable pagination, a Web service request can make use of these additional

attributes:

l count – number of records/keys to return. By default all records are returned. This

attribute indicates you want to use pagination. (Optional attribute)

l start – the starting record/key number. By default a retrieve request will start at

record 0. (Optional attribute)

l handle – a record-list handle returned on a previous retrieve request that specified a

count.

When pagination is used, the Web service does the following:

l If there is not a 'start' or 'count' attribute, the service returns all records or keys.

l With a valid 'start' value and 'no count' attribute, the service returns all records

starting from the 'start' attribute.

l With a valid 'start' attribute and valid 'count' attribute, the service returns the

number of keys or records starting from the 'start' attribute.

l With a negative 'start' attribute, the service returns records from the first record

and creates a warning in log file.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 114 of 242



l With a negative 'count' attribute, the service returns one record and creates a

warning message in the log file.

l With the 'start' attribute greater than the total number of records or keys, the

service returns no records and creates a message in the error log file.

Example: Use Web Service with pagination to retrieve

data from Service Manager

In the previous example the Web Service returned a list of eight Incident keys. To

illustrate pagination, this example limits the number of records to returned to four.

This requires the use of the additional attributes count and start.

For example to limit the response to a maximum of eight records starting at the first

record:

Request with pagination

<?xml version="1.0" encoding="UTF-8" ?><soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:RetrieveIncidentKeysListRequest attachmentInfo="?"
attachmentData="?" ignoreEmptyElements="true" count=8

start=0>
<pws:model query="">
<pws:keys query="">
<pws:IncidentID type="String" mandatory="?"

readonly="?">
</pws:IncidentID>
</pws:keys>

<pws:instance query="" uniquequery="?" recordid="?">

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 115 of 242



<pws:IncidentID type="String" mandatory="?"
readonly="?">

</pws:IncidentID>
<pws:Category type="String" mandatory="?" readonly="?">
</pws:Category>
<pws:OpenTime type="DateTime" mandatory="?"
readonly="?">
</pws:OpenTime>
<pws:OpenedBy type="String" mandatory="?"

readonly="?">#fal
</pws:OpenedBy>
<pws:severity type="String" mandatory="?" readonly="?">
</pws:severity>
<pws:UpdatedTime type="DateTime" mandatory="?"

readonly="?"></pws:UpdatedTime>
<pws:PrimaryAssignmentGroup type="String" mandatory="?"
readonly="?"></pws:PrimaryAssignmentGroup>
<pws:ClosedTime type="DateTime" mandatory="?"
readonly="?">
</pws:ClosedTime>
<pws:ClosedBy type="String" mandatory="?" readonly="?">
</pws:ClosedBy>
<pws:ClosureCode type="String" mandatory="?"
readonly="?">
</pws:ClosureCode>
<pws:ConfigurationItem type="String" mandatory="?"

readonly="?"></pws:ConfigurationItem>
<pws:Location type="String" mandatory="?" readonly="?">
</pws:Location>
<pws:IncidentDescription type="Array">
<pws:IncidentDescription type="String" mandatory="?"
readonly="?"></pws:IncidentDescription>
</pws:IncidentDescription>
<pws:Resolution type="Array">
<pws:Resolution type="String" mandatory="?"

readonly="?"></pws:Resolution>
</pws:Resolution>
<pws:AssigneeName type="String" mandatory="?"
readonly="?">

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 116 of 242



</pws:AssigneeName>
<pws:Contact type="String" mandatory="?" readonly="?">
</pws:Contact>
<pws:JournalUpdates type="Array">
<pws:JournalUpdates type="String" mandatory="?"

readonly="?"></pws:JournalUpdates>
</pws:JournalUpdates>
<pws:AlertStatus type="String" mandatory="?"
readonly="?">
</pws:AlertStatus>
<pws:ContactLastName type="String" mandatory="?"

readonly="?"></pws:ContactLastName>
<pws:ContactFirstName type="String" mandatory="?"

readonly="?"></pws:ContactFirstName>
<pws:Company type="String" mandatory="?" readonly="?">
</pws:Company>
<pws:BriefDescription type="String" mandatory="?"
readonly="?"></pws:BriefDescription>
<pws:TicketOwner type="String" mandatory="?"

readonly="?">
</pws:TicketOwner>
<pws:UpdatedBy type="String" mandatory="?"

readonly="?">falcon</pws:UpdatedBy>
<pws:IMTicketStatus type="String" mandatory="?"
readonly="?"></pws:IMTicketStatus>
<pws:Subcategory type="String" mandatory="?"
readonly="?">
</pws:Subcategory>
<pws:SLAAgreementID type="Decimal" mandatory="?"
readonly="?"></pws:SLAAgreementID>
<pws:SiteCategory type="String" mandatory="?"
readonly="?">
</pws:SiteCategory>
<pws:ProductType type="String" mandatory="?"

readonly="?">
</pws:ProductType>
<pws:ProblemType type="String" mandatory="?"
readonly="?">
</pws:ProblemType>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 117 of 242



<pws:ResolutionFixType type="String" mandatory="?"
readonly="?"></pws:ResolutionFixType>

<pws:UserPriority type="String" mandatory="?"
readonly="?">

</pws:UserPriority>
<pws:Solution type="Array">
<pws:Solution type="String" mandatory="?"
readonly="?">
</pws:Solution>
</pws:Solution>
<pws:InitialImpact type="String" mandatory="?"
readonly="?"></pws:InitialImpact>
<pws:folder type="String" mandatory="?" readonly="?">
</pws:folder>
</pws:instance>
<pws:messages>

<com:message type="String" mandatory="?" readonly="?"
severity="?" module="?">?</com:message>

</pws:messages>
</pws:model>
</pws:RetrieveIncidentKeysListRequest>
</soapenv:Envelope>

Response with pagination

The response indicates that eight records were returned (count=8). In addition the

response indicates that there are more records to retrieve (more=1).

<?xml version="1.0" encoding="utf-16"?>
<SOAP-ENV:Envelope xmlns:SOAPENV="

http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<RetrieveIncidentKeysListResponse count=8 more=1
handle=probsummary4d67db480000c0082000f1a0 message="Success"
query=""

returnCode="0" schemaRevisionDate="2007-04-14"
schemaRevisionLevel="1" status="SUCCESS"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 118 of 242



xsi:schemaLocation="http://servicecenter.peregrine.com/PWS
http://<sm

server>.americas.hpqcorp.net:13701/sc62server/ws/
Incident.xsd"

xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<keys>
<IncidentID type="String">IM10001</IncidentID>

</keys>
<keys>

<IncidentID type="String">IM10004</IncidentID>
</keys>
<keys>
<IncidentID type="String">IM10009</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10016</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10027</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10038</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10049</IncidentID>
</keys>
<keys>

<IncidentID type="String">IM10060</IncidentID>
</keys>

</RetrieveIncidentKeysListResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 119 of 242



Next pagination request

To retrieve the next page of records the request would increment the start attribute by

the previous count and supply the handle returned on the previous response.

This request is for the next set of records.

<?xml version="1.0" encoding="UTF-8" ?>
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS"
xmlns:com="http://servicecenter.peregrine.com/PWS/Common">
<soapenv:Header/>
<soapenv:Body>

<pws:RetrieveIncidentKeysListRequest attachmentInfo="?"
attachmentData="?" ignoreEmptyElements="true" count=8

start=8 handle= probsummary4d67db480000c0082000f1a0>
<pws:model query="">
<pws:keys query="">
<pws:IncidentID type="String" mandatory="?"

readonly="?">
</pws:IncidentID>
</pws:keys>
<pws:instance query="" uniquequery="?" recordid="?">
<pws:IncidentID type="String" mandatory="?"

readonly="?">
</pws:IncidentID>
<pws:Category type="String" mandatory="?" readonly="?">
</pws:Category>
<pws:OpenTime type="DateTime" mandatory="?"

readonly="?">
</pws:OpenTime>
<pws:OpenedBy type="String" mandatory="?"

readonly="?">#fal
</pws:OpenedBy>
<pws:severity type="String" mandatory="?" readonly="?">
</pws:severity>
<pws:UpdatedTime type="DateTime" mandatory="?"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 120 of 242



readonly="?"></pws:UpdatedTime>
<pws:PrimaryAssignmentGroup type="String" mandatory="?"

readonly="?"></pws:PrimaryAssignmentGroup>
<pws:ClosedTime type="DateTime" mandatory="?"

readonly="?">
</pws:ClosedTime>
<pws:ClosedBy type="String" mandatory="?" readonly="?">
</pws:ClosedBy>
<pws:ClosureCode type="String" mandatory="?"

readonly="?">
</pws:ClosureCode>
<pws:ConfigurationItem type="String" mandatory="?"

readonly="?"></pws:ConfigurationItem>
<pws:Location type="String" mandatory="?" readonly="?">
</pws:Location>
<pws:IncidentDescription type="Array">
<pws:IncidentDescription type="String" mandatory="?"

readonly="?"></pws:IncidentDescription>
</pws:IncidentDescription>
<pws:Resolution type="Array">
<pws:Resolution type="String" mandatory="?"

readonly="?"></pws:Resolution>
</pws:Resolution>
<pws:AssigneeName type="String" mandatory="?"

readonly="?">
</pws:AssigneeName>
<pws:Contact type="String" mandatory="?" readonly="?">
</pws:Contact>
<pws:JournalUpdates type="Array">
<pws:JournalUpdates type="String" mandatory="?"

readonly="?"></pws:JournalUpdates>
</pws:JournalUpdates>
<pws:AlertStatus type="String" mandatory="?"

readonly="?">
</pws:AlertStatus>
<pws:ContactLastName type="String" mandatory="?"

readonly="?"></pws:ContactLastName>
<pws:ContactFirstName type="String" mandatory="?"

readonly="?"></pws:ContactFirstName>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 121 of 242



<pws:Company type="String" mandatory="?" readonly="?">
</pws:Company>
<pws:BriefDescription type="String" mandatory="?"

readonly="?"></pws:BriefDescription>
<pws:TicketOwner type="String" mandatory="?"

readonly="?">
</pws:TicketOwner>
<pws:UpdatedBy type="String" mandatory="?"

readonly="?">falcon</pws:UpdatedBy>
<pws:IMTicketStatus type="String" mandatory="?"

readonly="?"></pws:IMTicketStatus>
<pws:Subcategory type="String" mandatory="?"

readonly="?">
</pws:Subcategory>
<pws:SLAAgreementID type="Decimal" mandatory="?"

readonly="?"></pws:SLAAgreementID>
<pws:SiteCategory type="String" mandatory="?"

readonly="?">
</pws:SiteCategory>
<pws:ProductType type="String" mandatory="?"

readonly="?">
</pws:ProductType>
<pws:ProblemType type="String" mandatory="?"

readonly="?">
</pws:ProblemType>
<pws:ResolutionFixType type="String" mandatory="?"

readonly="?"></pws:ResolutionFixType>
<pws:UserPriority type="String" mandatory="?"

readonly="?">
</pws:UserPriority>
<pws:Solution type="Array">
<pws:Solution type="String" mandatory="?"

readonly="?">
</pws:Solution>
</pws:Solution>
<pws:InitialImpact type="String" mandatory="?"

readonly="?"></pws:InitialImpact>
<pws:folder type="String" mandatory="?" readonly="?">
</pws:folder>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 122 of 242



</pws:instance>
<pws:messages>
<com:message type="String" mandatory="?" readonly="?"

severity="?" module="?">?</com:message>
</pws:messages>

</pws:model>
</pws:RetrieveIncidentKeysListRequest>

</soapenv:Envelope>

Next pagination response

The response indicates that one record was returned (count=1). In addition, the

response indicates that there are no more records to retrieve (more=0).

<?xml version="1.0" encoding="utf-16"?>
<SOAP-ENV:Envelope xmlns:SOAPENV="
http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<RetrieveIncidentKeysListResponse count=1 more=0
handle=probsummary4d67db480000c0082000f1a0 message="Success"
query=""

returnCode="0" schemaRevisionDate="2007-04-14"
schemaRevisionLevel="1" status="SUCCESS"

xsi:schemaLocation="http://servicecenter.peregrine.com/PWS
http://<sm

server>.americas.hpqcorp.net:13701/sc62server/ws/
Incident.xsd"

xmlns="http://servicecenter.peregrine.com/PWS"
xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<keys>

<IncidentID type="String">IM10061</IncidentID>
</keys>

</RetrieveIncidentKeysListResponse>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 123 of 242



</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Retrieve data from Service Manager for Optimistic

Locking

You can retrieve data via a Web service for later use in an update using optimistic

locking by using an additional attribute:

l updatecounter – a boolean value specifying if the response should include the

attribute updatecounter that can be used on a subsequent update request to

optimistically lock the record. The value returned in the updatecounter attribute can

be specified on a subsequent update request as the value of the updatecontraint

attribute. If the value of the updateconstraint matches the value in the database the

update is allowed. If the updateconstraint value does not match the value in the

database the update is rejected with a return code of 51 and the message “Record

modified since last retrieved”

For example to retrieve the data with the updatecounter.

Request with updatecounter

<?xml version="1.0" encoding="UTF-8" ?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:pws="http://servicecenter.peregrine.com/PWS"

xmlns:com="http://servicecenter.peregrine.com/PWS/Common">

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 124 of 242



<soapenv:Header/>

<soapenv:Body>

<pws:RetrieveIncidentKeysListRequest attachmentInfo="?"

attachmentData="?" ignoreEmptyElements="true">

<pws:model query="" updatecounter=true>

…

…

…

Response with updatecounter

The response indicates the updatecounter for each record returned.

<?xml version="1.0" encoding="utf-16"?>

<SOAP-ENV:Envelope xmlns:SOAPENV="

http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

<RetrieveIncidentKeysListResponse count=8 more=1

handle=probsummary4d67db480000c0082000f1a0 message="Success"
query=""

returnCode="0" schemaRevisionDate="2007-04-14"

schemaRevisionLevel="1" status="SUCCESS"

xsi:schemaLocation="http://servicecenter.peregrine.com/PWS

http://<sm server>.americas.hpqcorp.net:13701/sc62server/ws/

Incident.xsd"

xmlns="http://servicecenter.peregrine.com/PWS"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 125 of 242



xmlns:cmn="http://servicecenter.peregrine.com/PWS/Common"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<keys updatecounter=”7”>

<IncidentID type="String">IM10001</IncidentID>

</keys>

<keys updatecounter =”45”>

<IncidentID type="String">IM10004</IncidentID>

</keys>

<keys updatecounter =”9”>

<IncidentID type="String">IM10009</IncidentID>

</keys>

<keys updatecounter =”13”>

<IncidentID type="String">IM10016</IncidentID>

</keys>

…

…

…

Web Services examples in the RUN directory

All valid Web Services examples for Axis and .NET are contained in the <sm

install>\\webservices\sample directory.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 126 of 242



Both the AxisSample and the DotNetSample directories contain documents with setup

instructions. In AxisSample this document is readme.txt. In DotNetSample the

document is WebServices README.doc.

The AxisSample\bin directory contains a selection of batch files that can be run directly,

if JDK 1.4 or higher and Apache Ant are both installed on the machine. The DotNet

samples have to be compiled before running.

Note: Axis 1.x defaults to using its own httpSender class which is not compatible

with HTTP 1.1 Keep-Alive. Axis 1.x must be configured to use the commons-

httpclient jar file in order to get keep-alive behavior. Running the Web Service

without Keep-Alive negatively impacts performance. The Web Service client needs

to be Cookie aware so that the servlet container session is maintained. HP strongly

recommend using Axis 2 that provides HTTP 1.1 keep-alive support and cookie-

aware behavior.

Example: Retrieving Service Manager Release

Management changes into a text file using Connect-It

1. Create the Service Manager Web Services Connector with the following connection

parameter settings. (All other settings remain the defaults.)

• Server name: <server>:<httpPort (use a dedicated port, not the loadBalancer

port)>

• Context Path: sc62server/PWS

• Service name: Change Management

• Enter the SysAdmin userID and password

2. Click Test to verify that the connection works.

3. Click Finish to save the changes made to the new connector.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 127 of 242



4. In our example, the Web Service simply fills information into a delimited text field.

The settings for that connector are as follows:

• Name: Changes

• Processing Mode: write

• Connection protocol: Local / network files

• Enter a folder name and decide whether to create a separate file for each record

retrieved or write all records into one file (recommended).

• On the next screen, decide whether to append to the same file (recommended) or

overwrite with each run, or how many files to keep.

• Enter the path to the descriptor file (see below) or create a new descriptor file.

5. Click Finish to create and save the connector.

To create a description file for the text output file (comma delimited text in our

example), the following code is a sample .dsc file that can be used for retrieving

change information:

{ TextFileFormat SMChange
Extension=
FormatType=Delimited
EscapeChar="\\"
Quote="\""
Extracolumn=1
WriteColumn=1
Delimiter=,
{ String "Change Number"

UserType=Default
}
{ String "Category"

UserType=Default
}
{ String "Status"

UserType= Default

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 128 of 242



}
{ String "Approval Status"

UserType=Default
}
{ String "Requested By"

UserType=Default
}
{ String "Assigned To"

UserType= Default
}
{ String "Coordinator"

UserType=Default
}
{ String "Coordinator Phone"

UserType=Default
}
{ TimeStamp "Planned Start Date"

UserType=TimeStamp
}
{ TimeStamp "Planned End Date"

UserType=TimeStamp
}
{ String "Reason"

UserType=Default
}
{ String "Current Phase"

UserType= Default
}
{ String "Risk Assessment"

UserType=Default
}

}

6. Finally the source (Web Services) data and the target data (Delimited Text file)

must be mapped, in this case based on the matching names.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 129 of 242



7. Because Web Services need to be prompted to produce output, another text file

connector must be created that helps create the request sent to the Web service.

This text file connector is defined as follows:

• Processing Mode: read

• Connection Protocol: Local/Network files

• Location: Read files, file name: <path and filename>

• Upon successful processing, leave the file in the folder.

Use this .dsc file. Enter <path and filename> and click Find (magnifying glass) to

create or modify a description file.

8. Select a document type. Click the down arrow and enter SMChange.

9. Click Next.

10. Select a file for the preview. Accept the default <path and filename from step 6>

and click Next.

11. Select the appropriate delimiter.

12. Enter the information on the screen:

n Write the column headers: checked

n Do not generate errors if a line contains... : checked

n Number of skipped lines: 0

n Quote character: "

n Start of the comment line: //

n Escape character: /

13. Click Next.

14. Enter the column names and type: for example, Change Number - text

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 130 of 242



15. Click Finish to create and save the connector.

16. Now create a mapping between this text file and the Service Manager Web Service

by connecting the two.

17. Click the first text connector and click Produce Now (the F5 button) to fill

information from the cm3r file in Service Manager into a delimited text file via Web

Services.

Example: Getting change information from another

Service Manager system

This example retrieves change information from the cm3r file and uses the Web Service

to create a new change.

1. Click Tailoring > Web Services > Run WSDL to JS.

2. In the “Please enter the URL for the WSDL file” field, enter the following:

http://<serenade>:<port

number>/sc62server/PWS/ChangeManagement.wsdl

3. Click Proceed and then Add to create the ChangeManagement JavaScript record in

the ScriptLibrary.

Note: Service Manager always uses the user name and password you provided

to access the remote Web Service unless you override the values at run time.

For example, create custom JavaScript to use the currently logged in user's

credentials instead of the user name and password you provided to access the

remote Web Service.

function ChangeManagement( )
{
this.location = new String( 

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 131 of 242



"http://hostname:13080/sc62server/ws" );

this.user = null;
this.password = null;
this.connectTimeOut = 10;
this.sendTimeOut = 10;
this.recvTimeOut = 10;
this.soapEnvelope = null;
this.soapBody = null;
this.soapHeader = null;
this.attachments = new Array();
this.resultXML = null;
this.invoke = invoke;
[…]

Note: The namespace specified in “this.location” does not have to be

resolvable.

The user can be filled in here (this.user), or in the invoking script. As a best

practice, fill in the user in the invoking script.

4. Now that the Script has been added to the ScriptLibrary, you need to write another

JavaScript that can be used to retrieve the change or create a new change. Enter

the JavaScript code as listed below:

function RetrieveChangeKeysList(query)
{
try
{
var ChangeMgmtService=new system.library.ChangeManagement.
ChangeManagement();

/////////////////////////////////////////////////////////
// set Connection information (optional)
/////////////////////////////////////////////////////////

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 132 of 242



ChangeMgmtService.user = "falcon";
ChangeMgmtService.password = "";

/////////////////////////////////////////////////////////
// create the request object
/////////////////////////////////////////////////////////
var RetrieveChangeListRequest = new system.library.
ChangeManagement.RetrieveChangeKeysListRequest();

/////////////////////////////////////////////////////////
// Request Data Fill Section

/////////////////////////////////////////////////////////////
///////////

if (query!=null)
{
RetrieveChangeListRequest.model.instance.query=query;
}
else
print("Please enter a valid Query statement.")

/////////////////////////////////////////////////////////////
///////////
// Invoke and final processing

/////////////////////////////////////////////////////////////
///////////
var RetrieveChangesResponse = ChangeMgmtService.invoke( 
RetrieveChangeListRequest );

if ( RetrieveChangesResponse.isFault() )
{

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 133 of 242



print( RetrieveChangesResponse.messages.getContent() );
return(-1);
}
else
{ 
print("Success")
print(RetrieveChangesResponse.keys[0].ChangeNumber.getValue())
print(RetrieveChangesResponse.keys[1].ChangeNumber.getValue())
return(RetrieveChangesResponse.keys);
}

}
catch( e )
{
print( e );
}

}

function RetrieveChange(number)
{
try
{
var ChangeMgmtService=new
system.library.ChangeManagement.ChangeManagement();

/////////////////////////////////////////////////////////////
///////////
// set Connection information (optional)

/////////////////////////////////////////////////////////////
///////////
ChangeMgmtService.user = "falcon";
ChangeMgmtService.password = "";

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 134 of 242



/////////////////////////////////////////////////////////////
///////////
// create the request object

/////////////////////////////////////////////////////////////
///////////
var RetrieveChangeRequest = new
system.library.ChangeManagement.

RetrieveChangeRequest();

/////////////////////////////////////////////////////////////
///////////
// Request Data Fill Section

/////////////////////////////////////////////////////////////
///////////

if (number!=null)
{

RetrieveChangeRequest.model.instance.header.ChangeNumber.setV
alue(number);
}
else
print("Please pass in a valid Change Number.");

/////////////////////////////////////////////////////////////
///////////
// Invoke and final processing

/////////////////////////////////////////////////////////////
///////////
var RetrieveChangeResponse = ChangeMgmtService.invoke( 
RetrieveChangeRequest );

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 135 of 242



if ( RetrieveChangeResponse.isFault() )
{
print( RetrieveChangeResponse.messages.getContent() );
return(-1);
}
else
{ 
print("Success")
return(RetrieveChangeResponse.model.instance);
}

}
catch( e )
{
print( e );
}

}

5. Create a JavaScript in the same ScriptLibrary record that reads a change record

and then creates a new record in the other Service Manager system. Enter the Java

Script shown below:

function CreateChangeFromChange(change)
{

try
{

var ChangeMgmtService=new system.library.ChangeManagement.

ChangeManagement();

/////////////////////////////////////////////////////////////
////////////
// set Connection information (optional)

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 136 of 242



/////////////////////////////////////////////////////////////
////////////

ChangeMgmtService.user = "falcon";
ChangeMgmtService.password = "";

/////////////////////////////////////////////////////////////
////////////
// create the request object

/////////////////////////////////////////////////////////////
////////////

var CreateChangeRequest = new
system.library.ChangeManagement.

CreateChangeRequest();

/////////////////////////////////////////////////////////////
////////
// Request Data Fill Section

/////////////////////////////////////////////////////////////
////////

if (change!=null)
{

CreateChangeRequest.model.instance.header.Category.

setValue(change.header.Category.getValue());
CreateChangeRequest.model.instance.header.RequestedBy.

setValue(change.header.RequestedBy.getValue());
CreateChangeRequest.model.instance.header.Reason.

setValue(change.header.Reason.getValue());
CreateChangeRequest.model.instance.header.Coordinator.

setValue(change.header.Coordinator.getValue());
CreateChangeRequest.model.instance.InitialAssessment.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 137 of 242



setValue(change.InitialAssessment.getValue());
CreateChangeRequest.model.instance.Urgency.

setValue(change.Urgency.getValue());
CreateChangeRequest.model.instance.ReleaseType.

setValue(change.ReleaseType.getValue());

for (var i=0; i<change.description_structure.

Description.Description.length; i++)
{

CreateChangeRequest.model.instance.description_structure.

Description.Description_newInstance().

setValue(change.description_structure.Description.

Description[i].getValue());
}

}
else

print("Please pass in a valid Change Request.");

/////////////////////////////////////////////////////////////
/////////
// Invoke and final processing

/////////////////////////////////////////////////////////////
/////////

var CreateChangeResponse = ChangeMgmtService.

invoke( CreateChangeRequest );

if ( CreateChangeResponse.isFault() )
{

print( CreateChangeResponse.messages.getContent()
);

return(-1);
}

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 138 of 242



else
{ 

print("Success")
return(CreateChangeResponse.model.instance.header.

ChangeNumber.getValue());
}

}
catch( e )
{

print( e );
}

}

The following section shows how to call the above WebServices
from JavaScript:

/////////////////////////////////////////////////////////////
//////////
// Test Call

/////////////////////////////////////////////////////////////
//////////
var rc_Code_List=RetrieveChangeKeysList("category=\"" +
"Release Management"

+ "\"" + "and number <=\"" + "C10027" + "\"");

//var rc_Code_List=RetrieveChangeKeysList("number>=\"" +
"C10026" + "\"");

if (rc_Code_List != -1)
{

for (var i = 0; i < rc_Code_List.length; i+=1)
{

var rc_Code=RetrieveChange(rc_Code_List[i].ChangeNumber.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 139 of 242



getValue());
var rc_Create=CreateChangeFromChange(rc_Code);

}
}

Example to close an existing incident record

To run an example of closing an existing Incident Record from the Axis2Sample

directory, follow these steps:

1. Follow the instructions in the Axis README.txt file located in the

Axis2Sample\resources directory.

2. Enter the following in the DOS command prompt to close an incident:

C:\scs\sm920\server\webservices\sample\sm7webservices\
Axis2Sample\bin>CloseIncidentSample -host <sm server>

-port <sm port> -username falcon -incidentId IM10001
-closeCode Fault -resolution "It works now"

Note: If the username and password are not entered, they default to “falcon” with

no password.

Special considerations for using Keep-Alive with

Service Manager

A Service Manager user session starts when the Service Manager server receives the

first request from a SOAP client and ends when the SOAP client closes the HTTP

connection. The user login process is performed in the first SOAP client request and the

user logout process is performed when the SOAP client ends this Service Manager

session. A SOAP client can reduce the login and logout overhead by enabling HTTP

persistent connections, also called HTTP keep-alive. If you want to use HTTP 1.1 Keep-

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 140 of 242



Alive connections with a SOAP API client, the SOAP API client must support cookies.

When Service Manager responds to the first POST request from the SOAP API client, it

includes a Set Cookie header that conveys the servlet container sessionid to the client.

l Configure the SOAP stack with which the SOAP API client is written to support

cookies. Axis and .NET can both be configured to do this.

l If the SOAP toolkit supports HTTP 1.1 Keep-Alive but not cookies, you can arrange

for the application to echo back the JSESSIONID value in a Cookie header by adding

code to the client application to manually create the HTTP header on the second and

subsequent requests

Note:

l In HTTP/1.1, persistent connections are the default behavior of any connection.

l If you use HTTP 1.0 you have to manually set the HTTP header “connection” to

keep-alive.

l A SOAP client ends a Service Manager session by sending a request with the

HTTP header “connection” set to “close”. If a close request is never received by

the Service Manager server then this session is terminated by the Service

Manager server when the webservices_sessiontimeout time is reached.

Keep-Alive example for Service Manager

The following shows an example of the code for using Keep-Alive with Service Manager.

================================================================
client request:
POST /SM/7/ws HTTP/1.1
accept: application/xop+xml, text/xml image/gif, image/jpeg, *;
q=.2,
*/*; q=.2
authorization: Basic ZmFsY29uOg==
soapaction: "Create"
connection: Keep-Alive

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 141 of 242



.....

SM server response:
HTTP/1.1 200
Set-Cookie: JSESSIONID=ED61093038F9FF8CE9CF44E34C9366AC; Path=/SM
Keep-Alive: timeout=1200000, max=1000
Connection: Keep-Alive
Content-Type: text/xml;charset=utf-8
Content-Length: 2112
.....

Then you need to echo back the JSESSIONID for each client use the following:

POST /SM/7/ws HTTP/1.1
accept: application/xop+xml, text/xml image/gif, image/jpeg, *;
q=.2,
*/*; q=.2
authorization: Basic ZmFsY29uOg==
soapaction: "Retrieve"
connection: Keep-Alive
cookie: JSESSIONID=ED61093038F9FF8CE9CF44E34C9366AC; Path=/SM;
....
================================================================

Note: If you use Axis2 to implement the client then Axis2 can maintain the session

by calling the setManageSession(true).

There is an Axis2 example in SM711 installation directory:

(...\Server\webservices\sample\sm7webservices\Axis2Sample)

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 142 of 242



Use SSL to consume Service Manager Web

Services

Provide the client keystore and the client keystore password to the Web Service

consumer. He will need to enter this information into the proper location on his client.

For example, in SOAPUI, you can enter this information in the File > Preferences > SSL

Settings section. To find out how to create the client keystore, refer to the Service

Manager Trusted Sign-on White paper. Ensure that the client’s cacerts file contains the

information on the authority that signed the keystore.

Attachment handling

What do the following error messages mean?

Error Message: Warning: incoming add attachment request 1

has no href attribute

Error: unable to match incoming add attachment request 1

with no href attribute to an attachment part

They indicate that the <attachment> elements in the XML in the SOAP requests do not

have a href or contentId attribute value. The same value is supposed to be in the MIME

message part as the Content-ID: value. In SOAP with attachments, we need a

correlation between the XML element/attributes that describe the attachment, and the

actual binary or base64 attachment content which is in a MIME message. This

correlation is typically a unique ID specified in an href or Content-ID attribute.

The Service Manager server deliberately allows requests that omit the href or contentId

and attempts to match up the XML and the attachment parts.

We report the missing href or contentId value with a message in the sm.log file, as

follows:

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 143 of 242



Warning: incoming add attachment request 1 has no href

attribute

The server first tries to get an href or contentId value out of the XML; if it succeeds, it

finds the associated MIME attachment by looking for a MIME message part whose id has

the same value. If there is no href or Content-ID, the server tries to match up the

<attachment> element with a particular attachment part. This assumes that there is a

one-to-one correspondence between <attachment> elements and attachment parts

and uses the index of the DOM node of the <attachment> element as an index into the

array of binary attachment parts.

This strategy does not work when there are miscellaneous white-space nodes in the

DOM document, because the index number of the DOM node for the <attachment>

element is greater than it would otherwise be.

Service Manager allows requests with no href or

content-id

The reason HP Service Manager allows requests with no href or Content-ID is that with

some tools and toolkits it is difficult to arrange for the unique id of an attachment part

to be the same in the XML as in the binary attachment part. Though this is trivial when

using .NET, when using Axis, the Java code would generate a unique cid value in the

MIME message part dynamically during message serialization. Unless you write code to

set up a handler to participate in serialization (via a callback), it is impossible to match

the value in the XML to the value in the MIME message part. To prevent these problems,

Service Manager:

l Relaxed the schema such that href was not strictly required (use=optional).

l Added an alternative, optional attribute called Content-ID, which is used instead of

href when serving responses containing attachments to Axis clients.

l Added code to try to guess the href value that should be present in the XML, if it is

missing. If we are processing the Nth <attachment> element (the Nth DOM Node

within the set of DOM children for the <attachments> element, where the

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 144 of 242



<attachment> element has neither an href nor a Content-ID attribute), Service

Manager tries to look at the attachment part with the same index value to check

whether the name, length, and type match. If the number of DOM Node children

under <attachments> does not match the number of attachment parts, Service

Manager cannot process the attachment. It prints the following error in the sm.ini

file:

Error: unable to match incoming add attachment request 2 with
no href

attribute to an attachment part

This message says “attachment request 2”, which seems to be incorrect; because

there is only 1 <attachment> element, it should apparently be “attachment request

1.” However, the attachment element is the second DOM child node of

<attachments> due to the white space text present as DOM child node 1; the first

child node of <attachments> is white space that may be ignored.

The workaround is either do not serialize with pretty-printing (such as adding white

space nodes to make the XML easier to read for the human eye) when sending

requests to Service Manager, or write code that ensures that requests containing

attachment operations have either an href or Content-ID attribute on the

<attachment> element.

Supported attachment types in Service Manager are MIME and MTOM. We often get

the question if the consumer does not support these attachment types, if the

SYSATTACHMENTS file can be exposed to get the attachments out of Service

Manager. This is not supported. The attachments are compressed and cut into

<=32K pieces and cannot easily be read from an outside source. A workaround that

customers use frequently is receiving the attachment with the parent record, for

example via a RetrieveIncident request, and then transforming it into base64 and

sending to the consuming application where it can be transformed into the required

format.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 145 of 242



Sample script to send a record with attachments within

Service Manager

The sample script below sends a record with attachments from Service Manager to

ServiceManager. First, you will need to have a generated JavaScript for both Service

Managers: Service Manager 1, called IncidentManagement, and Service Manager 2,

called IncidentManagementTarget.

Note: The lines in bold font perform the attachment handling.

try
{

//STEP 1 --> RETRIEVE AN EXISTING INCIDENT HAVING ATTACHMENT(S)
//THIS EXAMPLE USE "IM10010", PLEASE ADD ONE OR MORE

ATTACHMENTS TO THIS INCIDENT IF NO
var imService = new lib.IncidentManagement.IncidentManagement();
var request = new lib.IncidentManagement.RetrieveIncidentRequest

();
request.model.instance.IncidentID.setValue( "IM10010" );
request.attachmentInfo = true;
request.attachmentData = true;

imService.user = "falcon";
imService.pwd = "";

var incidentResp = imService.invoke( request );
if ( incidentResp.isFault() )
{

print ( incidentResp.detail );
}
else
{ 

print( "SM OOB Test: Retrieved incident:" +
incidentResp.model.instance.IncidentID.getValue());

}

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 146 of 242



//STEP2 -->CREATE A NEW INCIDENT BASED ON THE RETRIEVED
INCIDENT

//USING 'IncidentManagement' WEB SERVICE

var imService2 = new
lib.IncidentManagementTarget.IncidentManagement();

var attach
var newAttach = new Array();
for (var i=0;

i<incidentResp.model.instance.attachments.attachment.length; i++)
{

attach = imService.attachments[i];
attach.href = "test_"+i;
attach.action="add";
newAttach.push( attach );

}

var createIM = new
lib.IncidentManagementTarget.CreateIncidentRequest();

imService2.setAttachments( newAttach );
imService2.user = "falcon";
imService2.pwd = "";

createIM.attachmentData = true;
createIM.attachmentInfo = true;

createIM.model.instance.OpenedBy.setValue
(incidentResp.model.instance.OpenedBy.getValue());

createIM.model.instance.Title.setValue
(incidentResp.model.instance.Title.getValue());

createIM.model.instance.Category.setValue
(incidentResp.model.instance.Category.getValue());

createIM.model.instance.Area.setValue
(incidentResp.model.instance.Area.getValue());

createIM.model.instance.Subarea.setValue
(incidentResp.model.instance.Subarea.getValue());

createIM.model.instance.Impact.setValue
(incidentResp.model.instance.Impact.getValue());

createIM.model.instance.Urgency.setValue
(incidentResp.model.instance.Urgency.getValue());

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 147 of 242



createIM.model.instance.AssignmentGroup.setValue
(incidentResp.model.instance.AssignmentGroup.getValue());

createIM.model.instance.Service.setValue
(incidentResp.model.instance.Service.getValue());

for (var i=0;i<newAttach.length;i++)
{

var attachmentXml =
createIM.model.instance.attachments.attachment_newInstance();

attachmentXml.action = newAttach[i].action;
attachmentXml.name = newAttach[i].name;
attachmentXml.type = newAttach[i].type;
attachmentXml.len = newAttach[i].value.length;
attachmentXml.attachmentType = attach.attachmentType;

}

for (var
i=0;i<incidentResp.model.instance.Description.Description.length;
i++)

{
newDescriptionLine =

createIM.model.instance.Description.Description_newInstance();
newDescriptionLine.setValue

(incidentResp.model.instance.Description.Description[i].getValue
());

}

response = imService2.invoke(createIM);

if ( response.isFault() )
{

print ( "SM OOB Test: Outgoing request failed with error:" +
response.detail );

}
else
{ 

if ( response.messages.message.length; i++ )
{

print ( "SM OOB Test: Outgoing request returned message:"
+ response.messages.message

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 148 of 242



[i].getValue() );
}

}
print("Incident" +

incidentResp.model.instance.IncidentID.getValue()
+ "was retrieved from" + imService.getHost() + ":" +

imService.getPort()
+ "and copied to new incident "
+ response.model.instance.IncidentID.getValue()
+ "on" + imService2.getHost() + ":" + imService2.getPort

());
}
catch( e )
{

print( "SM OOB Test: Outgoing request returned message: "
+ response.messages.message[i].getValue() );

);
}

Consume an external Web Service
You can configure HP Service Manager to connect to and exchange information with

remote Web Services. This functionality allows Service Manager to act as a client to

other servers that publish Web Services. Service Manager uses JavaScript™ to create

and format the proper SOAP messages.

Note: For a production application that needs services that are not available within

your corporate intranet (such as postal address verification, email address

verification, and currency conversions) HP recommends that you investigate

offerings from established for-fee Web Services vendors. Although there are a lot of

free and demo Web Services, we do not recommend basing a production application

on such services, since availability of the service is not guaranteed. Several Web

sites such as www.xmethods.net publish lists of available free and fee-based Web

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 149 of 242



Services. (Be sure to click the full list button to see the complete list of Web

Services.)

Use the WSDL2JS utility

The WSDL2JS (Web Services description language to JavaScript) utility translates the

operations and types in the WSDL into objects, methods and functions in JavaScript

that can be called from another JavaScript record.

The WSDL2JS utility is a JavaScript script library record named SOAP. It is written

based on the W3C specifications for WSDL to interpret the content of the WSDL.

To consume a Web Service from Service Manager perform the following steps.

1. Obtain the URL to the Web Service's WSDL file.

2. Examine the WSDL either as a text file, or using a third-party graphical WSDL

analysis tool to determine what functions, inputs, and formats the Web service

expects. Some third-party Web Services tools allow you to experiment

interactively with Web Services. HP recommends that you familiarize yourself with

the Web Service using such a tool before beginning any Service Manager JavaScript

work.

3. Execute the Run WSDL to JS wizard to obtain and convert the Web service's WSDL

into JavaScript.

4. Write custom JavaScript to call the JavaScript functions generated by the WSDL to

JS wizard. These functions will enable you to create and send the SOAP messages

required to interact with the Web service. HP recommends that you write a short

“standalone” script and invoke it from the Script Library utility to test it prior to

implementing the JavaScript call from Format Control, Triggers, or Display Options.

After you have determined and debugged the JavaScript code required to invoke

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 150 of 242



the service, you can then integrate the script with your Service Manager

application.

5. Tailor your Service Manager application to invoke your custom JavaScript when you

want to connect to a remote a Web service. Usually Web Services are invoked from

the Document Engine, Format Control, Links, Display application, or from similar

tailoring tools.

Best practices for writing a JavaScript to consume

a Web service

Never modify the JavaScript that is automatically generated by WSDL2JS unless you

are specifically instructed to do so by Service Manager Customer Support. To invoke the

Web service, write a JavaScript record that calls the functions generated by WSDL2JS.

The JavaScript that invokes an external Web service should perform the following

tasks:

1. Create the Service Object.

2. Create the Request Object.

3. Fill the Request Object with information that defines the request.

4. Invoke the Service Object and pass in the Request Object.

5. Return either the Response Object, an instance of the Response Object, or a specific

value of that instance.

6. Perform error handling to test each response. Use try {…}, throw {…}, catch {…},

and the isFault function.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 151 of 242



As a best practice, do not reuse the names of variables and functions in the calling

JavaScript that are the names of variables and functions in the generated script. This

can help avoid confusion.

Caution: Never use the “new” keyword on a subordinate object unless it is an array.

Unlike conventionally compiled applications that invoke a Web service, the

generated function objects described in this document already use “new” when

instantiating all children, so it is not necessary to do so in the calling JavaScript.

The only exception is for arrays, where you use the newInstance() function to

generate the array and fill its elements.

Date/Time handling

The self-written JavaScript is responsible for correct formatting of xml schema

dateTime fields. The WSDL2JS-generated functions do not reformat the values assigned

to them to convert them into the correct format. If a field in an outgoing SOAP message

is defined as a dateTime, and the script writer assigns a value to the field, it needs to

be a valid XML Schema dateTime, duration or other date/time string value. It cannot be

a Service Manager datetime string nor should it be a JavaScript dateTime string. To get

the valid XML Schema date/time, the script writer should use the XMLDate global

object. For example:

// get today’s date/time from Javascript Date() object and store
in a
new XMLDate object
var xmlDt = new XMLDate( new Date() );

// coerce the datetime value stored in the XMLDate object to
ISO/XML
schema format
print( xmlDt.getISODateTimeString() );

There are a variety of methods for the XMLDate object that you can look up in the

white paper with the title of JavaScript Programmers Guide.pdf.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 152 of 242



The constructor for XMLDate can handle several different formats. You can pass it a

string, a number of milliseconds, or a JS Date object (as in the example above).

Example: Interface to another system

This is an example for interfacing the Service Manager ServiceCatalog with HP’s PPM

Demand service via Web Services.

When writing an interface to a different system, it is very important to understand the

data structure and the methods available, as well as understand how to interpret the

generated JavaScript code. In this example, we will not only discuss the methods and

fields published by the WSDL, but reading the generated code to successfully write the

invoking code as well.

1. Determine the correct URL to enter into the WSDL to JS tool, check with the PPM

administrator.

2. In Service Manager, go to Menu Navigator and click Utilities > Tools > Web

Services. Click Run WSDL to JS.

3. Enter the URL to the WSDL, such as
http://<hostname>:8080/itg/ppmservices/DemandService?ws

dl.

4. Click Proceed.

5. Click Add to add the new ScriptLibrary record called DemandService.

6. Write an interfacing JavaScript record in the ScriptLibrary called

DemandServiceInvoke.

Generated JavaScript interfaces

This section helps provide a general understanding of how the generated JavaScript

interfaces with the invoking JavaScript. As a best practice, find the proper objects and

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 153 of 242



methods using a tool such as SoapUI and test the Web Service there prior to writing the

invoking script. It should not be necessary to interpret the generated code when taking

that approach.

Check these sections in the “master” JavaScript to write the calling JavaScript:

The first line in the master code gives the name of the main function or Service Object

to call in the calling JavaScript:

function DemandService( )
{

this.location = new String( "http://<ppm server>:15000/itg/
ppmservices/DemandService" );

Create a request for a new project

Find the function that creates the desired result; in this case create a request for a new

project:

this.SOAPOperations[ "createRequest" ] = new soap_Operation

( "createRequest", "urn:createRequest", "document",
"createRequest",

"createRequestResponse" );
…
function createRequest( )
{

this.$$nsPrefix = "ns1";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 154 of 242



this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "createRequest";
this.$$xmlNames[ "createRequest" ] = "createRequest";
this.xmlns_ns1 = new String

("http://mercury.com/ppm/dm/service/1.0");
this.$$attributes.push( "xmlns_ns1" );
this.$$xmlNames["xmlns_ns1"] = "xmlns:ns1";
this.$$objNames["xmlns:ns1"] = "xmlns_ns1";
this.requestObj = new Request();
this.$$elementChildren.push( "requestObj" );

}

The structure of the request

The bold $$elementChildren.push section shows that the requestObj Child element is of

type Request(). To find the structure of the Request, find the definition of that function

in the generated code.

function Request( )
{

this.$$nsPrefix = "ns8";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "Request";
this.$$xmlNames[ "Request" ] = "Request";

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 155 of 242



this.$$minOccurs[ "id" ] = 0;
this.id = new xs_string();
this.$$elementChildren.push( "id" );
this.requestType = new xs_string();
this.$$elementChildren.push( "requestType" );
this.simpleFields = new Array(); // of SimpleField
this.simpleFields.$$nsPrefix = "ns8"
this.simpleFields_newInstance = function()
{

var newLen = this.simpleFields.push( new SimpleField() );
return this.simpleFields[ newLen-1 ];

}
this.$$elementChildren.push( "simpleFields" );
this.tables = new Array(); // of Table
this.tables.$$nsPrefix = "ns8"
this.tables_newInstance = function()
{

var newLen = this.tables.push( new Table() );
return this.tables[ newLen-1 ];

}
this.$$elementChildren.push( "tables" );
this.notes = new Array(); // of Note
this.notes.$$nsPrefix = "ns8"
this.notes_newInstance = function()
{

var newLen = this.notes.push( new Note() );
return this.notes[ newLen-1 ];

}
this.$$elementChildren.push( "notes" );
this.fieldChangeNotes = new Array(); // of FieldChangeNote
this.fieldChangeNotes.$$nsPrefix = "ns8"
this.fieldChangeNotes_newInstance = function()
{

var newLen = this.fieldChangeNotes.push( new FieldChangeNote
() );

return this.fieldChangeNotes[ newLen-1 ];
}
this.$$elementChildren.push( "fieldChangeNotes" );
this.URLReferences = new Array(); // of URLReference

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 156 of 242



this.URLReferences.$$nsPrefix = "ns8"
this.URLReferences_newInstance = function()
{

var newLen = this.URLReferences.push( new URLReference() );
return this.URLReferences[ newLen-1 ];

}
this.$$elementChildren.push( "URLReferences" );
this.remoteReferences = new Array(); // of RemoteReference
this.remoteReferences.$$nsPrefix = "ns8"
this.remoteReferences_newInstance = function()
{

var newLen = this.remoteReferences.push( new RemoteReference
() );

return this.remoteReferences[ newLen-1 ];
}
this.$$elementChildren.push( "remoteReferences" );

}

Request object

The Request object can contain simple Fields, Notes, Field Change Notes, Tables etc.

This example examines these fields.

function SimpleField( )
{

this.$$nsPrefix = "ns8";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 157 of 242



this.$$name = "SimpleField";
this.$$xmlNames[ "SimpleField" ] = "SimpleField";
this.token = new xs_string();
this.token.$$nsPrefix = "ns7"
this.$$refs[ "token" ] = true;
this.$$elementChildren.push( "token" );
this.stringValue = new Array(); // of xs_string
this.stringValue.$$nsPrefix = "ns8"
this.stringValue_newInstance = function()
{

var newLen = this.stringValue.push( new xs_string() );
return this.stringValue[ newLen-1 ];

}
this.$$elementChildren.push( "stringValue" );
this.$$minOccurs[ "dateValue" ] = 0;
this.dateValue = new xs_dateTime();
this.$$elementChildren.push( "dateValue" );

}

Simple fields

Simple fields consist of tokens (of type xs_string), as well as instances of string Values

(where each element is of type xs_string).

Check the xs_string() function

When checking the xs_string() function, you will find that the JavaScript uses the

setValue function to fill the elements with data.

function xs_string( val )
{

this.$$nsPrefix = "xsd";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 158 of 242



this.$$refs = new Array();
this.getValue = getValue;
this.setValue = setValue;
this.$$value = val;
this.xsi_type = new String("xsd:string");
this.$$attributes.push( "xsi_type" );
this.$$xmlNames["xsi_type"] = "xsi:type";
this.$$objNames["xsi:type"] = "xsi_type";

}

function setValue( value )
{
this.$$value = value;

}

Check expected parameters in invoke() function

Check which parameters the invoke() function expects.

function invoke( requestObj, headerObj, bEmitXsiTypeAttributes )

In this case, the headerObj and the bEmitXsiTypeAttributes are optional. They are

“nullsub’ed” in the JavaScript code), so the requestObj is the only required argument.

Check the syntax for the Response function

function createRequestResponse( )
{

this.$$nsPrefix = "ns1";
this.$$elementFormDefault = "qualified";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.$$refs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 159 of 242



this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "createRequestResponse";
this.$$xmlNames[ "createRequestResponse" ] =

"createRequestResponse";
this.$$xmlNames["_return"] = "return";
this.$$objNames["return"] = "_return";
this._return = new RemoteReference();
this.$$elementChildren.push( "_return" );

}

Use getValue

Use getValue (or a similarly defined function) to read the result of the request.

function getValue( )
{
return this.$$value;

}

Write the invoking JavaScript code

Now that the generated JavaScript gave information on the structure of the code to use

for invoke, write the invoking JavaScript code. In this case, the invoking code gets

passed in information from a Service Catalog Item. This information is then processed

and passed through to the PPM Web Service.

function CreateDemandRequest(CartItem)
{

try
{

/////////////////////////////////////////////////////////////////
////
// Initialization Section

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 160 of 242



/////////////////////////////////////////////////////////////////
/
// first, initialize the Service Object for this JavaScript

var DemandService=new
system.library.DemandService.DemandService();

// set Connection information (optional)
DemandService.user = "admin";
DemandService.password = "admin";

// DemandService.location="http://<ppm server>:15000
/itg/ppmservices/DemandService";

DemandService.location="http://localhost:15001
/itg/ppmservices/DemandService";

// create the request object
var RequestDemRequest =

new system.library.DemandService.createRequest
();

/////////////////////////////////////////////////////////////////
///////
// Data Fill Section

/////////////////////////////////////////////////////////////////
///////

// Data from Cart Item

var PlannedStart=system.library.xmlFill.
getValue(CartItem.options, "PlannedStart");

var PlannedEnd=system.library.xmlFill.
getValue(CartItem.options, "PlannedEnd");

var ProjectName=system.library.xmlFill.
getValue(CartItem.options, "ProjectName");

var ProjectManager=system.library.xmlFill.getValue

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 161 of 242



(CartItem.options, "ProjectManager");
var Region=system.library.xmlFill.getValue
(CartItem.options, "Region");

var ProjectType=system.library.xmlFill.getValue
(CartItem.options, "ProjectType");

// Fill into Web Request
RequestDemRequest.requestObj.requestType.setValue
( "PFM - Proposal" );

RequestDemRequest.requestObj.simpleFields_newInstance();

RequestDemRequest.requestObj.simpleFields[0].token.setValue
("REQ.VP.KNTA_PLAN_START_DATE");
var String0=RequestDemRequest.requestObj.simpleFields[0]
.stringValue_newInstance();

String0.setValue(PlannedStart)
RequestDemRequest.requestObj.simpleFields_newInstance();

RequestDemRequest.requestObj.simpleFields[1].token.setValue
("REQ.VP.KNTA_PLAN_FINISH_DATE");

var String1=RequestDemRequest.requestObj.simpleFields[1]
.stringValue_newInstance();

String1.setValue(PlannedEnd)

RequestDemRequest.requestObj.simpleFields_newInstance();
RequestDemRequest.requestObj.simpleFields[2].token.setValue
("REQ.VP.KNTA_PROJECT_NAME");

var String2=RequestDemRequest.requestObj.simpleFields[2]
.stringValue_newInstance();

String2.setValue(ProjectName)

RequestDemRequest.requestObj.simpleFields_newInstance();
RequestDemRequest.requestObj.simpleFields[3].token

.setValue("REQ.VP.KNTA_PROJECT_MANAGER");
var String3=RequestDemRequest.requestObj.simpleFields[3]

.stringValue_newInstance();
String3.setValue(ProjectManager)

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 162 of 242



RequestDemRequest.requestObj.simpleFields_newInstance();
RequestDemRequest.requestObj.simpleFields[4].token

.setValue("REQ.VP.KNTA_REGION");
var String4=RequestDemRequest.requestObj.simpleFields[4]

.stringValue_newInstance();
String4.setValue(Region)

RequestDemRequest.requestObj.simpleFields_newInstance();
RequestDemRequest.requestObj.simpleFields[5].token.setValue

("REQ.VP.KNTA_PROJECT_TYPE");
var String5=RequestDemRequest.requestObj.simpleFields[5]

.stringValue_newInstance();
String5.setValue(ProjectType)

// var ProjectNotes=RequestDemRequest.requestObj.
notes_newInstance();

// ProjectNotes.content.setValue("notes");
RequestDemRequest.requestObj.simpleFields[4].token.getValue())

/////////////////////////////////////////////////////////////////
////////
// Invoke and final processing

/////////////////////////////////////////////////////////////////
////////

var DemandResponse = DemandService.invoke
( RequestDemRequest );

if ( DemandResponse.isFault() )
{

print( DemandResponse.faultcode.getValue() );
print( DemandResponse.faultstring.getValue() );
print( DemandResponse.detail.getValue() );

return("Failure");
}
else
{ 

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 163 of 242



print("Success")
return("Success");

}

}
catch( e )
{

print( e );
}

}

/////////////////////////////////////////////////////////////////
///////
// Test Call

/////////////////////////////////////////////////////////////////
////////

//var rc_Code=CreateDemandRequest(CartItem);

Determine the structure of the request and response

To determine the structure of the request and response, it is very helpful to look at

both the request and response using a tool such as SOAP UI. The PPM WSDL shown

below generated the request and response in the next section using SOAP UI.

PPM WSDL:

- <wsdl:definitions
xmlns:ds="http://mercury.com/ppm/dm/service/1.0"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:dmMsg="http://mercury.com/ppm/dm/msg/1.0"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 164 of 242



targetNamespace="http://mercury.com/ppm/dm/msg/1.0">
<wsdl:documentation>DemandService</wsdl:documentation>

- <wsdl:types>
- <xs:schema xmlns:dm="http://mercury.com/ppm/dm/1.0"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:common="http://mercury.com/ppm/common/1.0"
attributeFormDefault="qualified"

elementFormDefault="qualified"
targetNamespace="http://mercury.com/ppm/dm/service/1.0">

<xs:import namespace="http://mercury.com/ppm/dm/1.0"
schemaLocation="DemandService?xsd=xsd0" />

- <xs:element name="createRequest">
- <xs:complexType>
- <xs:sequence>

<xs:element name="requestObj" type="dm:Request" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="createRequestResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="return" nillable="true"
type="dm:RemoteReference" />

</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="getRequests">
- <xs:complexType>
- <xs:sequence>

<xs:element maxOccurs="unbounded" name="requestIds"
nillable="true" type="dm:Identifier" />

</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="getRequestsResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element maxOccurs="unbounded" name="return"
nillable="true" type="dm:Request" />

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 165 of 242



</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="addRequestNotes">
- <xs:complexType>
- <xs:sequence>

<xs:element name="requestId" type="dm:Identifier" />
<xs:element maxOccurs="unbounded" name="notes"

type="common:Note" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="addRequestNotesResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="return" nillable="true" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="deleteRequests">
- <xs:complexType>
- <xs:sequence>

<xs:element maxOccurs="unbounded" name="requestIds"
type="dm:Identifier" />

</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="deleteRequestsResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="return" nillable="true" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="setRequestRemoteReferenceStatus">
- <xs:complexType>
- <xs:sequence>

<xs:element name="receiver" type="dm:Identifier" />
<xs:element name="source" type="dm:Identifier" />

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 166 of 242



<xs:element name="status" type="xs:string" />
<xs:element maxOccurs="unbounded" name="fields" nillable="true"
type="dm:SimpleField" />

</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="setRequestRemoteReferenceStatusResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="return" nillable="true" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="setRequestFields">
- <xs:complexType>
- <xs:sequence>

<xs:element name="requestId" type="dm:Identifier" />
<xs:element maxOccurs="unbounded" name="fields"
type="dm:SimpleField" />

</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="setRequestFieldsResponse">
- <xs:complexType>
- <xs:sequence>

<xs:element name="return" nillable="true" type="xs:int" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="executeWFTransitions">
- <xs:complexType>
- <xs:sequence>

<xs:element name="receiver" type="dm:Identifier" />
<xs:element name="transition" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>

- <xs:element name="executeWFTransitionsResponse">
- <xs:complexType>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 167 of 242



- <xs:sequence>
<xs:element name="return" nillable="true" type="xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
</wsdl:types>

- <wsdl:message name="setRequestRemoteReferenceStatusMessage">
<wsdl:part name="part1"

element="ds:setRequestRemoteReferenceStatus" />
</wsdl:message>

- <wsdl:message
name="setRequestRemoteReferenceStatusResponseMessage">

<wsdl:part name="part1"
element="ds:setRequestRemoteReferenceStatusResponse" />

</wsdl:message>
- <wsdl:message name="addRequestNotesMessage">

<wsdl:part name="part1" element="ds:addRequestNotes" />
</wsdl:message>

- <wsdl:message name="addRequestNotesResponseMessage">
<wsdl:part name="part1" element="ds:addRequestNotesResponse" />
</wsdl:message>

- <wsdl:message name="createRequestMessage">
<wsdl:part name="part1" element="ds:createRequest" />
</wsdl:message>

- <wsdl:message name="createRequestResponseMessage">
<wsdl:part name="part1" element="ds:createRequestResponse" />
</wsdl:message>

- <wsdl:message name="deleteRequestsMessage">
<wsdl:part name="part1" element="ds:deleteRequests" />
</wsdl:message>

- <wsdl:message name="deleteRequestsResponseMessage">
<wsdl:part name="part1" element="ds:deleteRequestsResponse" />
</wsdl:message>

- <wsdl:message name="setRequestFieldsMessage">
<wsdl:part name="part1" element="ds:setRequestFields" />
</wsdl:message>

- <wsdl:message name="setRequestFieldsResponseMessage">
<wsdl:part name="part1" element="ds:setRequestFieldsResponse"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 168 of 242



/>
</wsdl:message>

- <wsdl:message name="getRequestsMessage">
<wsdl:part name="part1" element="ds:getRequests" />
</wsdl:message>

- <wsdl:message name="getRequestsResponseMessage">
<wsdl:part name="part1" element="ds:getRequestsResponse" />
</wsdl:message>

- <wsdl:message name="executeWFTransitionsMessage">
<wsdl:part name="part1" element="ds:executeWFTransitions" />
</wsdl:message>

- <wsdl:message name="executeWFTransitionsResponseMessage">
<wsdl:part name="part1"

element="ds:executeWFTransitionsResponse" />
</wsdl:message>

- <wsdl:portType name="DemandServicePortType">
- <wsdl:operation name="setRequestRemoteReferenceStatus">

<wsdl:input
message="dmMsg:setRequestRemoteReferenceStatusMessage"

wsaw:Action="urn:setRequestRemoteReferenceStatus" />
<wsdl:output message=
"dmMsg:setRequestRemoteReferenceStatusResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0/
DemandServicePortType/setRequestRemoteReferenceStatus" />

</wsdl:operation>
- <wsdl:operation name="addRequestNotes">

<wsdl:input message="dmMsg:addRequestNotesMessage"
wsaw:Action="urn:addRequestNotes" />

<wsdl:output message="dmMsg:addRequestNotesResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/addRequestNotesResponse" />

</wsdl:operation>
- <wsdl:operation name="createRequest">

<wsdl:input message="dmMsg:createRequestMessage"
wsaw:Action="urn:createRequest" />

<wsdl:output message="dmMsg:createRequestResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0/
DemandServicePortType/createRequestResponse" />

</wsdl:operation>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 169 of 242



- <wsdl:operation name="deleteRequests">
<wsdl:input message="dmMsg:deleteRequestsMessage"
wsaw:Action="urn:deleteRequests" />

<wsdl:output message="dmMsg:deleteRequestsResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/deleteRequestsResponse" />

</wsdl:operation>
- <wsdl:operation name="setRequestFields">

<wsdl:input message="dmMsg:setRequestFieldsMessage"
wsaw:Action="urn:setRequestFields" />

<wsdl:output message="dmMsg:setRequestFieldsResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/setRequestFieldsResponse" />

</wsdl:operation>
- <wsdl:operation name="getRequests">

<wsdl:input message="dmMsg:getRequestsMessage"
wsaw:Action="urn:getRequests" />

<wsdl:output message="dmMsg:getRequestsResponseMessage"
wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/getRequestsResponse" />

</wsdl:operation>
- <wsdl:operation name="executeWFTransitions">

<wsdl:input message="dmMsg:executeWFTransitionsMessage"
wsaw:Action="urn:executeWFTransitions" />

<wsdl:output
message="dmMsg:executeWFTransitionsResponseMessage"

wsaw:Action="http://mercury.com/ppm/dm/msg/1.0
/DemandServicePortType/executeWFTransitionsResponse" />

</wsdl:operation>
</wsdl:portType>

- <wsdl:binding name="DemandServiceSOAP11Binding"
type="dmMsg:DemandServicePortType">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />

- <wsdl:operation name="setRequestRemoteReferenceStatus">
<soap:operation

soapAction="urn:setRequestRemoteReferenceStatus"
style="document" />

- <wsdl:input>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 170 of 242



<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="addRequestNotes">
<soap:operation soapAction="urn:addRequestNotes"

style="document" />
- <wsdl:input>

<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="createRequest">
<soap:operation soapAction="urn:createRequest" style="document"

/>
- <wsdl:input>

<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="deleteRequests">
<soap:operation soapAction="urn:deleteRequests"

style="document" />
- <wsdl:input>

<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="setRequestFields">
<soap:operation soapAction="urn:setRequestFields"

style="document" />

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 171 of 242



- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="getRequests">
<soap:operation soapAction="urn:getRequests" style="document"

/>
- <wsdl:input>

<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="executeWFTransitions">
<soap:operation soapAction="urn:executeWFTransitions"
style="document" />

- <wsdl:input>
<soap:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

- <wsdl:binding name="DemandServiceSOAP12Binding"
type="dmMsg:DemandServicePortType">

<soap12:binding transport="http://schemas.xmlsoap.org/soap
/http" style="document" />

- <wsdl:operation name="setRequestRemoteReferenceStatus">
<soap12:operation

soapAction="urn:setRequestRemoteReferenceStatus"
style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 172 of 242



- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="addRequestNotes">
<soap12:operation soapAction="urn:addRequestNotes"

style="document" />
- <wsdl:input>

<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="createRequest">
<soap12:operation soapAction="urn:createRequest"

style="document" />
- <wsdl:input>

<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="deleteRequests">
<soap12:operation soapAction="urn:deleteRequests"

style="document" />
- <wsdl:input>

<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="setRequestFields">
<soap12:operation soapAction="urn:setRequestFields"

style="document" />
- <wsdl:input>

<soap12:body use="literal" />

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 173 of 242



</wsdl:input>
- <wsdl:output>

<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="getRequests">
<soap12:operation soapAction="urn:getRequests" style="document"

/>
- <wsdl:input>

<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="executeWFTransitions">
<soap12:operation soapAction="urn:executeWFTransitions"
style="document" />

- <wsdl:input>
<soap12:body use="literal" />
</wsdl:input>

- <wsdl:output>
<soap12:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

- <wsdl:binding name="DemandServiceHttpBinding"
type="dmMsg:DemandServicePortType">

<http:binding verb="POST" />
- <wsdl:operation name="setRequestRemoteReferenceStatus">

<http:operation location="setRequestRemoteReferenceStatus" />
- <wsdl:input>

<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="addRequestNotes">

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 174 of 242



<http:operation location="addRequestNotes" />
- <wsdl:input>

<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="createRequest">
<http:operation location="createRequest" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="deleteRequests">
<http:operation location="deleteRequests" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="setRequestFields">
<http:operation location="setRequestFields" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="getRequests">
<http:operation location="getRequests" />

- <wsdl:input>
<mime:content type="text/xml" />

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 175 of 242



</wsdl:input>
- <wsdl:output>

<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>

- <wsdl:operation name="executeWFTransitions">
<http:operation location="executeWFTransitions" />

- <wsdl:input>
<mime:content type="text/xml" />
</wsdl:input>

- <wsdl:output>
<mime:content type="text/xml" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

- <wsdl:service name="DemandService">
- <wsdl:port name="DemandServiceSOAP11port_http"

binding="dmMsg:DemandServiceSOAP11Binding">
<soap:address location="http://<ppm

server>:15000/itg/ppmservices/
DemandService" />
</wsdl:port>

- <wsdl:port name="DemandServiceSOAP12port_http"
binding="dmMsg:DemandServiceSOAP12Binding">

<soap12:address location="http://<ppm server>:15000/itg/
ppmservices/DemandService" />

</wsdl:port>
- <wsdl:port name="DemandServiceHttpport1"

binding="dmMsg:DemandServiceHttpBinding">
<http:address location="http://<ppm server>:15000/itg/
ppmrest/DemandService" />

</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 176 of 242



PPM request

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/"

xmlns:ns="http://mercury.com/ppm/dm/service/1.0"
xmlns:ns1="http://mercury.com/ppm/dm/1.0"
xmlns:ns2="http://mercury.com/ppm/common/1.0">
<soapenv:Header/>
<soapenv:Body>

<ns:createRequest>
<ns:requestObj>

<!--Optional:-->
<ns1:id></ns1:id>
<ns1:requestType></ns1:requestType>
<!--Zero or more repetitions:-->
<ns1:simpleFields>

<ns2:token>REQ.VP.KNTA_PLAN_START_DATE</ns2:token>
<!--Zero or more repetitions:-->
<ns1:stringValue>May 2008</ns1:stringValue>
<!--Optional:-->
<ns1:dateValue></ns1:dateValue>

</ns1:simpleFields>
<!--1 or more repetitions:-->
<ns1:tables>

<ns2:token></ns2:token>
<!--1 or more repetitions:-->
<ns2:columns>

<ns2:token></ns2:token>
<!--1 or more repetitions:-->
<ns2:values></ns2:values>
<!--1 or more repetitions:-->
<ns2:dates></ns2:dates>

</ns2:columns>
</ns1:tables>
<!--1 or more repetitions:-->
<ns1:notes>

<!--Optional:-->
<ns2:author></ns2:author>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 177 of 242



<!--Optional:-->
<ns2:creationDate></ns2:creationDate>
<!--Optional:-->
<ns2:content></ns2:content>

</ns1:notes>
<!--1 or more repetitions:-->
<ns1:fieldChangeNotes>

<!--Optional:-->
<ns2:author></ns2:author>
<!--Optional:-->
<ns2:creationDate>?</ns2:creationDate>
<!--Optional:-->
<ns2:content></ns2:content>
<ns1:fieldPrompt></ns1:fieldPrompt>
<ns1:oldValue></ns1:oldValue>
<ns1:newValue></ns1:newValue>

</ns1:fieldChangeNotes>
<!--1 or more repetitions:-->
<ns1:URLReferences>

<!--Optional:-->
<ns1:addedBy></ns1:addedBy>
<!--Optional:-->
<ns1:creationDate></ns1:creationDate>
<!--Optional:-->
<ns1:description></ns1:description>
<!--Optional:-->
<ns1:name></ns1:name>
<ns1:refURL></ns1:refURL>

</ns1:URLReferences>
<!--1 or more repetitions:-->
<ns1:remoteReferences>

<!--Optional:-->
<ns1:addedBy></ns1:addedBy>
<!--Optional:-->
<ns1:creationDate></ns1:creationDate>
<!--Optional:-->
<ns1:description></ns1:description>
<!--Optional:-->
<ns1:name></ns1:name>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 178 of 242



<!--Optional:-->
<ns1:displayURL></ns1:displayURL>
<ns1:identifier>

<ns1:id></ns1:id>
<!--Optional:-->
<ns1:serverURL></ns1:serverURL>

</ns1:identifier>
<!--Optional:-->
<ns1:status></ns1:status>

</ns1:remoteReferences>
</ns:requestObj>

</ns:createRequest>
</soapenv:Body>

</soapenv:Envelope>

PPM response

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/">
<soapenv:Header/>
<soapenv:Body>

<soapenv:Fault>
<faultcode>INTERNAL ERROR</faultcode>
<faultstring>Internal error has occurred while calling
PPM Web Service. Please contact PPM support with the

detail
information if the problem persists. (KNTA-11186)
Details: Missing 'T' separator in

dateTime</faultstring>
<detail>

<exception:exceptionDetails xmlns:exception=
"http://www.mercury.com/ppm/ws/exception">
<exception:detail>Missing 'T' separator in

dateTime
</exception:detail>

</exception:exceptionDetails>
</detail>

</soapenv:Fault>

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 179 of 242



</soapenv:Body>
</soapenv:Envelope>

Web Services with a proxy server

It is possible to consume Web Services through a proxy server in Service Manager. The

proxy server settings allow your Service Manager server to connect to remote sites and

download the WSDL for the remote Web Services. The following parameters have to be

added to the sm.ini file for the Web service to connect through a proxy server.

l JVMOptionX:-

Dhttp.proxyHost=proxyserver.domain.company.com

l JVMOptionY:-Dhttp.proxyPort=<port number, 8088>

You can also specify a list of hosts to bypass the proxy:

JVMOptionZ:-

Dhttp.nonProxyHosts="*.americas.hpqcorp.net|localhost"

The http.nonProxyHosts property indicates the hosts which should connect

directly and not through the proxy server. The value can be a list of hosts, each

separated by a |, and in addition a wildcard character (*) can be used for matching.

The X, Y and Z represent three consecutive numbers. The first JVMOption in the sm.ini

will be number 1, the next will be number 2 and 3 etc. If these three are the only

JVMOptions in your sm.ini, they will be:

l JVMOption1:-

Dhttp.proxyHost=proxyserver.domain.company.com

l JVMOption2:-Dhttp.proxyPort=<port number, e.g. 8088>

l JVMOption3:-

Dhttp.nonProxyHosts="*.domain.company.com|localhost"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 180 of 242



Connecting to a secure Web service

If you are consuming a secure Web service that requires mutual authentication from

Service Manager application using Javascript and WSDL2JS, follow these steps:.

If you are consuming an SSL-protected Web service using Javascript in SM 7x, which

uses java.xml.soap.SOAPConnection to send the request, the SSL configuration is done

using Java key stores. Refer to the documentation for the list of sm.ini parameters

required for SSL configuration.

When you consume a secure Web service or Web site from JavaScript all you need to do

is use an https:// URL. There are no facilities for configuring SSL in WSDL2JS or in your

script. The SSL communication that is initiated by the WSDL2JS-generated code relies

on the SSL configuration that is in place for the server itself. The Service Manager

server’s server certificate in effect becomes the client certificate for the outbound

request.

To supply a Basic Authorization header when consuming a Web service using JavaScript

generated by WSDL2JS, basic authentication is supplied automatically if you supply

userid and password values on the service object generated by WSDL2JS as shown in

the below example:

var service = new system.library.IncidentManagement.
IncidentManagement();

service.user = "falcon";
service.password = "";
...

If on the other hand, you are coding a REST-style GET directly in your script, you need to

code it manually, because you have to code the HTTP request yourself. Add the

following style code in the JavaScript to perform this:

// HTTP GET example with Basic Auth header

var headers = new Array();

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 181 of 242



try
{

if ( result.userid != undefined )
{

var authHeader = new Header();

authHeader.name = "Authorization";
authHeader.value = "Basic " + base64Encode

( result.userid + ":" + result.password );

headers.push( authHeader );
}

strWSDLsrc = doHTTPRequest( "GET", wsdlURL, headers, null,
10, 10, 10 );

}
catch( e )
{ 

print( "WSDL request failed with exception " + e );
...

}

Use SSL connections to connect to an external

Web service

When using SSL connections to an external Web service, the HP Service Manager server

acts like a client and must be set up accordingly. The Web service provider must send

the root certificate or the certificate authority’s (CA) certificate to the Service Manager

administrator. If it is a certificate hierarchy, all certificates must be sent. Add this

certificate to the Service Manager cacerts file using keytool.

For an anonymous SSL connection with an external Web Service using WSDL2JS, you

need a root certificate file which includes the certificate for the CA that signed the

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 182 of 242



remote Web Server's certificate. The cacerts file that is shipped with Service Manager

may not contain the needed CA certificates and needs to be edited as described above.

When the root certificate file is saved, the following parameters must be added to

sm.ini on the Service Manager server if they do not already exist. These parameters

identify the name of the root certificate or authority's certificate as well as the Service

Manager server’s keystore.

Parameter Description

-truststoreFile The TrustStore file to use to validate client certificates. Default to
the cacerts in the RUN\jre\security directory.

-
truststorePass

Identifies the password to the keystore file containing the external
Web Servics's CA certificate. The pass phrase for the TrustStore file

-keystoreFile Identifies the keystore file containing the Service Manager's server's
certificate and private key. Server keystore

-keystorePass Identifies the password to the keystore file containing the Service
Manager's certificate and private key. Pass phrase for server
keystore.

To enable the SSL encryption, follow these steps:

1. Stop the Service Manager server.

2. Open the sm.ini file with a text editor.

3. Add the following parameters and their values:

a. keystoreFile

b. keystorePass

c. truststoreFile:cacerts

d. truststorePass

4. Save sm.ini.

5. Restart the Service Manager sever.

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 183 of 242



6. Login to Service Manager with SysAdmin privileges.

7. Click Tailoring > Web Services > Run WSDL to JS.

8. Update the endpoint URL to the external Web Service to include the HTTPS

protocol. For example: https://remote_server.remote_

domain.com:13445/remote_service.wsdl

If the https://<fully qualified server

path>:<portnumber>/<Service>.wsdl connection does not work after you

make these changes, it is possible that the distinguished name (DN) used to create the

certificate is not identical to the fully qualified server path in the URL. Check which DN

the certificate is using by asking the provider of the certificate. If it is different from

the fully qualified path used in the URL, request a new certificate where the DN

matches the URL. If this cannot be done in a timely manner, the following workaround

can be tested:

Go to the server’s hosts file (which is located in etc/hosts on UNIX® systems, and

located in c:\winnt\system32\drivers\etc\hosts on Windows systems). In the hosts file,

add a line with the fully qualified name of the certificate and the IP address of the

machine that runs the Web Service. For example:

mymachine.hp.com 10.2.5.77

where my”machine.hp.com” is the distinguished name (DN) of the certificate and

10.2.5.77 is the IP address for the server that hosts the Web Service.

Note: This is a temporary workaround, and not a permanent fix. Once the new

certificate is issued, that certificate should be put into the root certificate file, and

the entry in the hosts file should be removed.

Caution: When you use SSL connections on high-frequency Web Services where

many requests per second are made, performance is negatively impacted because

an SSL handshake occurs for each SOAP request. The SSL handshake involves

numerous TCP requests and responses as the two partners identify each other,

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 184 of 242



negotiate the encryption algorithm, and perform other required tasks. To avoid this

issue, ensure to use keep-alive connections. These will perform the handshake once

and then SSL is set up for the length of the session.

Web Services connections through a firewall

If your Service Manager server is behind a firewall, you may need to configure a proxy

server redirection to send and receive WSDL and SOAP requests. If your firewall uses

the SOCKS protocol, then it can likely handle Web Services redirection requests

transparently to the user. If your firewall does not recognize the SOCKS protocol, then

you can install a dedicated redirector application for SOCKS traffic such as that

generated by Web Services requests.

If you install a redirector application for your Web Services SOAP traffic, then you need

to modify the URLs you use to connect to the remote Web Services. To download the

remote WSDL, change the URL listed in the WSDL to JS wizard to point to the dedicated

socket you have established for the remote Web Service. To send and receive SOAP

messages to the Web Service, you can change the location object of your custom

JavaScript to the dedicated socket you have established for the remote Web Service.

Example: dedicated socket connection

Define a dedicated socket on port 8888 to the Amazon Search Service using the

following proxyconnect command of the connect.c application:

proxyconnect -p 8888 -S 192.168.1.254:1080

http://soap.amazon.com/onca/soap280

To obtain the WSDL for the Amazon Search Service through this example proxy

connection, update the WSDL to JS URL to point to:

http://localhost:8888/soap/servlet/rpcrouter

To send to and to receive from the Amazon Search Service SOAP messages , you could

update the custom calling script AmazonSearchServiceTestwith the following new

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 185 of 242



line just after the AmazonSearchService.ActorSearchRequest class is

initialized.

actorSearchRequest.location =

"http://localhost:8888/soap/servlet/rpcrouter"

Web Services Guide

SOAP API

HP Service Manager (9.40 Codeless) Page 186 of 242



RESTful API
Service Manager also supports a Rest API Framework. You can use the Rest API

Framework to support lightweight queries and operations on Service Manager data via

a single URI. Using the Rest API Framework you can create an application that can

perform Create, Read, Update, and Delete actions on Service Manager objects.

The Rest API Framework re-implements most of the functionality that the Service

Manager SOAP implementation. Therefore, the Rest API Framework uses the same

actions on objects as the SOAP implementation, and the implementation methods are

similar.

For more information on the available actions, see the Allowed Actions tab field

definitions in the Web Services Guide.

Service Document
Service Manager supports the automatic generation of RESTful Service Documents by

providing an HTML (text/html) representation.

RESTful Service Documents represent server-defined group of Collections used to

initialize the process of creating and editing resources.

After RESTful Enabled is checked into Web Service Configuration for a Web service,

its description will be generated.

At the top of the document, there is a group of all of Service Manager RESTful services.

You can go to the detailed description of each service by clicking Service Name.

In the detail of the description, you can find the URI and supported HTTP Methods for

each Resource Type. You can also find the supported actions’ descriptions.

For example:

HP Service Manager (9.40 Codeless) Page 187 of 242



Consuming Service Manager RESTful API
A Service Manager Restful Web service can be consumed by a custom client or by an

application that directly consumes Restful Web Services.

RESTful Syntax

A RESTful query allows you to send a request or execute an operation by sending a

single Universal Resource Identifier (URI) space to Service Manager. In general, the

format for the URI resembles the following:

l http://{host}:{port}/{initialPath}

This example uses the following placeholders:

l The {host} placeholder indicates the host or domain name on which the service is

available.

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 188 of 242



l The {port} placeholder indicates the TCP port number on which the service is

available.

l The {initialPath} placeholder indicates any initial path that is part of the URI for a

given deployment. This might be the path to the deployment point on the given

server. This value should start with /SM/9/rest.

Resource Types

The Rest API Framework in Service Manager allows you to perform standard CRUD

operations on resources. URI endpoints for resources are roughly divided into the

following resource types:

l Resource Collection

l Resource Instance

l Resource with Actions

l Attachment Collection

l Attachment Instance

URI Structure

The following table describes the structure of URIs that can be used in the Rest API

Framework.

URI Resour
ce

Comme
nts

Example

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 189 of 242



/ Service
Docum
ent

This is
the
service
docum
ent for
an
entire
busines
s
servic
e. Only
the GET
method
is
support
ed.

http://{host}:{port}/SM/9/rest

/{
resource
s}

Resourc
e
Collecti
on

This is
the
collecti
on
resourc
es.
Only
the GET
and
POST
method
s are
support
ed.

http://{host}:{port}/SM/9/rest/incidents

/{
resource
s}/{key}

Resourc
e
Instanc
e

This is
an
individ
ual
resourc
e.

http://{host}:{port}/SM/9/rest/incidents/IM10001

If with multiple keys, it should be {key1}/{key2}/
{key3}. If one of the key value is null, it should look
like: {key1}/null/{key3}

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 190 of 242



/{
resource
s}/{key}
/attach
ments

Attach
ments
Collecti
on

This is
the
attach
ment
list for
an
individ
ual
resourc
e.

http:/{host}:{port}
/SM/9/rest/incidents/IM10001/attachments

/{
resource
s}/{key}
/attach
ments/{
attachm
ent-id}

Attach
ment

This is
an
individ
ual
attach
ment.

http://{host}:{port}
/SM/9/rest/incidents/IM10002/attachments/cid:51d
d0b6d0002c0042075d798

/{
resource
s}/{key}
/action/
{action}

Resourc
e With
Actions

Only
the
POST
method
is
support
ed.

POST http://{host}:{port}
/SM/9/rest/incidents/IM10134/action/reopen

This table uses the following placeholders:

l The {resources} placeholder represents the resource key of the individual object.

l The {attachment-id} placeholder represents the ID of the attachment for an

individual resource.

l The {key} placeholder represents any unique key specified in the extaccess record.

l The {action} placeholder represents any action specified in the Allowed Actions tab of

the External Access Definition. It must be lower case. For example, if the action in

the Allowed Actions tab is "Reopen", the value of {action} should be "reopen".

l action, attachments and view are keywords that are used in the URI.

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 191 of 242



RESTful Authentication

The RESTful API framework supports the following authentication methods:

l HTTP Basic Authentication

l CAC (Common Access Card)

l TSO (Trusted Sign On)

l LW-SSO (Light Weight Single Sign On)

RESTful Commands

The Rest API Framework supports the following HTTP commands:

l GET

l POST

l PUT

l DELETE

The functionality of these commands varies according to the type of object to which it

is applied and the actions that are associated with that object. The following table

shows example resources and illustrates how these commands are used:

Object Example Commands Result

Servic
e
Docum
ent

GET / Returns
all
accessibl
e URLs.

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 192 of 242



Query GET/<incidents> Returns
all
Incidents

GET/<incidents>/<id> Returns
an
Incident
with the
specified
ID.

GET/<incidents>?query=<url-encoded-
string>&sort=number:ascending

Returns
a subset
of
Incidents
as
specified
by the
URL enc
oded
string, in
ascendin
g order.

Resour
ces
with
Action
s

POST /<incidents> Creates
an
Incident

PUT /<incidents>/<id> Updates
an
specific
Incident

POST /<incidents>/<id>/action/<action> Invokes
a
customiz
ed action
on a
specific
Incident

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 193 of 242



RESTful Queries

The Rest API Framework also supports several parameters to query resources to return

different views of a resource or to filter for desired entries in a list. You can run a query

on all resource types.

Example of a query:

l /incidents?field1=value1&field2=value2 //Simple Query

l /incidents?query=<url-encoded-string>&sort=number:ascending
//Service Manager Native Query

Note:

l A query string must use HTML URL Encoding.

l Datetime fields must use ISO standard formats.

l A query string must use HTML URL Encoding.

l Datetime fields must use ISO standard formats.

The following table describes the parameters you can use:

Par
am
ete
r
Na
me

T
y
p
e

Description:

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 194 of 242



que
ry

n
a
ti
v
e
s
m

q
u
e
r
y

Field name could be either "Caption" or "Field".

Examples:

Category="incident" and (Title="Desktop screen out of
order" or Title="Network logon failure")

Category="incident" and (brief.description="Desktop
screen out of order" or brief.description="Network
logon failure")

sort s
tr
in
g

Returns the collection members in sorted order according to the
arguments specified. Arguments are listed in pairs where the first
argument of the pair specifies the attribute name on which to base the
sort, and the second argument of the pair indicates whether to sort
ascending or descending. More than one attribute can be specified on the
sort list. The attributes “ascending” and “descending” can be used as well.

sort={primaryField}:{ascending|descending}[,
{secondaryField}:

{ascending|descending}...]

For example, sort=Urgency or sort=severity or
sort=Urgency:ascending,field2:descending

By default, the sortorder is ascending.

sta
rt

in
t

Indicates the index of the member that the collection response
representation begins with.

cou
nt

in
t

Indicates the number of collection members to be included in the response.
The minimum value for this parameter is 1. By default, its behavior is to
return all members. The behavior is the same as “view=summary” if
“count=0”.

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 195 of 242



vie
w

s
tr
in
g

Represents a collection.

Supported values:

view=summary

view=condense (default)

view=expand

summary: It returns the number of members if there are any, it does not
return the actual members.

condense: Returns the value of unique key field, it does not return the
whole record. This is the default behavior if the view query parameter is
not specified.

expand: It returns all the fields defined in the extaccess record.

Resource Representations

The following topics describe the media types and supported commands for each

resource.

Media Types for an Individual Resource

The following table describes the supported commands and media types for an

individual resource.

Action Supported? Supported Request Media
Types

Supported Response Media
Types

GET √ - application/json

POST √ application/json application/json

PUT √ application/json application/json

DELETE √ - application/json

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 196 of 242



Resource Collection Media Types

The following table describes the supported commands and media types for a resource

collection.

Action Supported? Supported Request Media
Types

Supported Response Media
Types

GET √ - application/json

POST √ application/json application/json

PUT - - -

DELETE - - -

Media Types for an individual attachment

The following table describes the supported commands and media types for an

individual attachment .

Action Supported? Supported Request Media
Types

Supported Response Media
Types

GET √ - The attachment binary

POST - - -

PUT √ The attachment binary application/json

DELETE √ - application/json

Resource Collection Media Types

The following table describes the supported commands and media types for an

attachment collection.

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 197 of 242



Action Supported? Supported Request Media
Types

Supported Response Media
Types

GET √ - application/json

POST √ The attachment binary application/json

PUT - - -

DELETE √ - application/json

Enable a Resource for REST

To enable a resource to use the RESTful API Framework, follow these steps:

1. Navigate to Tailoring > Web Services > Web Service Configuration.

2. If needed, enter the information in the Service Name, Name, or Object Name fields

to specify the resource you want to enable for RESTful.

3. Click Search, and then select the appropriate resource from the list.

4. Under External Access Definition, click the RESTful API tab.

5. Check the RESTful Enabled? check box.

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 198 of 242



6. Specify the following required fields:

Field Function

Resource Collection Name: This is the name of the Resource Collection. For
example, you may specify the group of incidents
from the probsummary table as "incidents".

Resource Name: This is the name of the individual Resource. For
example, you may specify that any individual
incident from the probsummary table be referred
to as an "Incident".

Unique Keys This field specifies one or more fields that will
function as a unique identifier for a Resource from
the Resource Collection.

7. If needed, specify the following additional fields:

Field Function

Resource
Collection
Action

POST:

This field represents the default action for resource collection.

Resource
Actions

POST:

PUT:

DELETE:

This field specifies the action to take when an individual resource is
part of a POST, PUT, DELETE command. These actions are specified in
the Allowed Actions tab of the External Access Definition.

RESTful Capability Word

The Rest API Framework introduces the following capability word to Service Manager:

RESTful API.

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 199 of 242



You MUST add this capability word to a user's operator record for a user to be able to

log in and execute a RESTful API request.

Note: Existing OMi integration RESTful functions will not check it and keep

unchanged. The rest actions go through document engine and follow the same

permission process as normal client.

HTTP Header

Request Header

Autorization:

Keep-Alive:

Connnection:

Accept-Language:

Content-Type: (Required for attachment POST/PUT action)

Content-Disposition: (Required for attachment POST/PUT action. Value is

attachment;filename=filename; Semicolon is reserved for character separator, so it is

not allowed in file name.)

Note: Accept-Language is used for l10n.

Response Header

code&msg: 200, 201, 400, 401, 404, 500

Content-Type:

Content-Length:

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 200 of 242



HTTP Response Codes

Unless otherwise specified, these HTTP status codes are used:

Code Cause

200 Successful operation. Viewing a list or detail page will return this code if no
error occurred.

201 Successful POST operations. Returned after a successful create or update of a
object.

400 Bad request.  This response code may indicate that the URI was formed
incorrectly.

401 Unauthorized operations.

404 Page not found. The page or resource does not exist.

500 Internal server error. This response code may indicate a bug. Please contact
HP Support.

See Also

Network Working Group RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1

Network Working Group RFC 2616 Section 10: Status Code Definitions

OOB Resource Reference Example

The following topic provide detailed information on how specific resources are published

(for example, Incident):

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 201 of 242

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html


Web Service: Incident

External Access Definition:

Field Value

Service Name: IncidentManagement

Name: probsummary

Object Name: Incident

Default RESTful settings

Field Value

RESTful Enabled: checked

Attachments Enabled: checked

Resource Collection Name: incidents

Resource Name: Incident

Unique Keys: number

HTTP Resource Collection Actions

Command Action Result

GET Retrieves a list of Incidents

POST Create Creates a new collection of resources

HTTP Resource Actions

Command Action Result

GET - Retrieves an individual Incident.

PUT: Update Saves the changes to the Incident record.

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 202 of 242



POST: Update Saves the changes to the Incident record.

DELETE: -

Samples

Return sample of single incident query

{"Messages":[],
"ReturnCode":0,
"Incident":{

"UpdatedBy":"falcon",
"Status":"Closed",
"SLAAgreementID":168,
"Urgency":"3",
"Area":"failure",
"OpenTime":"2007-08-31T20:21:00+00:00",
"Location":"advantage/North America",
"ClosedTime":"2007-09-01T01:13:00+00:00",
"Title":"Printer malfunction",
"Subarea":"job failed",
"Solution":["Reset printer queue."],
"ClosedBy":"Incident.Analyst",
"OpenedBy":"Servicedesk.Manager",
"IncidentID":"IM10001",
"Assignee":"Incident.Analyst",
"Company":"advantage",
"Description":["Printjob keeps pending."],
"TicketOwner":"Servicedesk.Manager",
"ProblemType":"incident",
"AssignmentGroup":"Office Supplies (North America)",
"UpdatedTime":"2008-08-04T12:53:21+00:00",
"Service":"Printing (North America)",
"Impact":"4",
"ClosureCode":"Solved by Workaround",
"Category":"incident",
"AffectedCI":"adv-nam-printer-hr-5550"
}

}

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 203 of 242



Note: "Incident" is the Resource Name as defined in the extaccess record.

Return sample of incident list query

{
"@totalcount":136,
"@start":1,
"@count":10,
"Messages":[],
"content":[

{"Incident":{"IncidentID":"IM10001"}},
{"Incident":{"IncidentID":"IM10002"}},
{"Incident":{"IncidentID":"IM10003"}},
{"Incident":{"IncidentID":"IM10004"}},
{"Incident":{"IncidentID":"IM10005"}},
{"Incident":{"IncidentID":"IM10006"}},
{"Incident":{"IncidentID":"IM10007"}},
{"Incident":{"IncidentID":"IM10008"}},
{"Incident":{"IncidentID":"IM10009"}},
{"Incident":{"IncidentID":"IM10010"}}

],
"ReturnCode":0,
"ResourceName":"Incident"

}

Request sample of creating an incident

{
"Incident":
{

"AffectedCI" :"adv-nam-server-mail",
"AlertStatus" : "updated",
"Area" :"failure",
"Assignee" : "Incident.Analyst",
"AssignmentGroup": "Network",
"Category" : "incident",
"ClosureCode" : "Solved by Workaround",
"Company" : "advantage",

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 204 of 242



"Contact" : "FALCON, JENNIFER",
"ContactFirstName" :"FALCON",
"ContactLastName" : "JENNIFER",
"Description" : [ "test" ],
"Impact" : "2",
"JournalUpdates":

[ "08/04/08 12:54:14 US/Mountain (falcon):",
"test",
"08/04/08 12:54:14 US/Mountain (falcon):",
"test"

],
"Location":"advantage/North America",
"OpenTime" : "2007-09-02T07:51:00+00:00",
"OpenedBy":"Jurr.Fleijs",
"ProblemType" : "incident",
"ResolutionFixType" : "incident",
"SLAAgreementID" : 168,
"Service" : "E-mail / Webmail (North America)",
"SiteCategory" : "incident",
"Solution" : ["Solution by rest api"],
"Status" : "Work In Progress",
"Subarea" :"function or feature not working",
"TicketOwner" : "Jurr.Fleijs",
"Title" : "test",
"UpdatedBy" : "problem",
"UpdatedTime" : "2008-08-04T12:54:26+00:00",
"Urgency" : "3",
"UserPriority": "3 - Average",
"explanation" : ["test"],
"folder" :"advantage"
}

}

Web Services Guide

RESTful API

HP Service Manager (9.40 Codeless) Page 205 of 242



Troubleshooting
The combination of debugging tools and information gathered from faults usually helps

you find the root cause of an issue easily. Unfortunately, not all Web Services give

sufficient fault messages, which makes debugging the issue more challenging.

Understanding the return codes provided by
Web Services
Currently the status attribute always contains either "SUCCESS" or "FAILURE." A best

practice is to check either the status to see if it has the value “SUCCESS” or to check

the return code to see if it is zero. All other values equate to FAILURE. The value of the

message attribute is a string which corresponds to the return code value. The Service

Manager server global JavaScript method called RCtoString()will convert a particular

integer return code value to the corresponding message text. The following are the

currently defined values:

Value Definition

0 Success

1 Bad Length

2 Bad Serial Number

3 Resource Unavailable

4 Unable to Terminate

5 Resource Not Available

6 Resource Expired

HP Service Manager (9.40 Codeless) Page 206 of 242



Value Definition

7 Specified Name Not Found

9 No (more) records found

10 No messages

11 No query words

12 No stop words

13 No string

14 No such word

15 Not enough memory

16 Already exists

17 Shutdown error

18 Stop words not found

19 Too many documents

20 Unable to open file for output

21 Waiting for resource

22 Word length too long

23 Duplicate file system

24 Duplicate IPC Key

25 IPC Key Not Found

27 Wrong owner

28 Not authorized

29 Invalid Userid Specified

30 Invalid Password Specified

31 New Password is Invalid

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 207 of 242



Value Definition

32 Password Expired

33 Authority Revoked

34 Max Attempts to Login Exceeded

35 Max Number of Logins Exceeded

36 Invalid terminal for user

37 Invalid Authorization Code

38 Maximum users exceeded

39 Named user already logged in

40 Not a named user and no floating users available

41 User Already Logged In

42 Forced synchronization

43 IR read count mismatch

44 Seek error

45 24x7: DBLOG error

46 Open error

47 Error closing remote file

48 Duplicate key

49 Null key

50 All null keys

51 Record modified since last retrieved

52 Record deleted since last retrieved

53 Trigger Error

54 Not supported

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 208 of 242



Value Definition

55 Record no longer qualifies

56 Query timed out

57 Unable to delete file

58 Partially-keyed or non-keyed query

59 Error occurred in parsing

60 Shared memory version mismatch

61 Distributed Lock Manager cannot lock item

62 Refresh not needed

63 Userid expired

64 Userid inactive

65 SQL conversion skipped for this file

66 Query could not be parsed

67 file could not be opened

68 User is not located in LDAP

69 User is not allowed to use ODBC driver

70 Invalid SOAPaction / unrecognized application action

71 Validation failed

72 User is not allowed to use SOAP API

Example of a failure return code and message

The following is an example of a failure return code and message:

message="No (more) records found" returnCode="9"

status="FAILURE"

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 209 of 242



Detailed return codes from Document Engine

The System Administrator can manipulate the detailed return code by setting the value

of $L.exit in the Document Engine process’s final expressions to one of the

following:

Action or Error Situation $L.exit value

record has changed since it was selected changed

cancel processing the record cancel

record is locked locked

Request failed validation bad.val

record was deleted since it was selected deleted

exit processing exit

normal exit normal

Record should get unlocked unlock

Sets exit value to menu to return to the menu menu

Record was added, screen will be refreshed added

Processing will restart – starting with init of file variable restart

Processing will proceed with a new state record newstate

Displayed records will be refreshed refresh

Displayed joinfile records will be refreshed refreshjoinfile

Category changes newcat

Position in record list will be changed reposition

Record will be reset to original values resetrec

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 210 of 242



Mode will be set to close and close processing will start closestate

Restart processing starting with init of file variable restart

Mode will be set to add, which goes into the open state openstate

Initializing values to add record setupadd

An undefined action was passed to the document engine invalid.action

User is not authorized for this action no auth

Troubleshooting SOAP API
This section lists common issues of SOAP API and describes the methods to

troubleshoot.

Debugging

Three parameters are most frequently used: debughttp:1, RTM:3, and

debugdbquery:999. It may be useful to use the msglog:1 parameter to have all

messages written to the sm.log as well, especially for Connect-It Web Services

integrations. As a best practice, put these debug parameters on the dedicated Web

Services port such as shown below:

sm -httpPort:13087 –debugnode –debughttp:1

The debughttp parameter

Add the debughttp in the server sm.ini file or in the dedicated servlet container line

of the sm.cfg file, restart the Service Manager server and rerun the Web service

application to invoke the debugging parameter.

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 211 of 242



For consuming Web Services, the debughttp parameter writes to two files in the

Service Manager server log directory, http.log and writes additional information into

the sm.log file.

An excerpt of the http.log file follows. (To determine which areas of the log file are for

the Web service call, search for “sm7server/ws”. Regular client communication uses

SOAP UI instead.)

POST /sm7webserver/ws HTTP/1.1
content-type: text/xml;charset=UTF-8
soapaction: "EnableNewEmployee"
user-agent: Jakarta Commons-HttpClient/3.0.1
host: <server>:<port>
content-length: 2033

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:pws="http://servicecenter.peregrine.com/PWS" xmlns:com=
"http://servicecenter.peregrine.com/PWS/Common">

<soapenv:Header/>
<soapenv:Body>

<pws:EnableNewEmployeeRequestQuoteRequest attachmentInfo="?
attachmentData="?" ignoreEmptyElements="true">

<pws:model query="?">
<pws:keys query="?">

<!--Optional:-->
<pws:number type="String" mandatory="?"

readonly="?">?</pws:number>
</pws:keys>
<pws:instance query="?" uniquequery="?" recordid="?">

<!--Optional:-->
<pws:Priority type="String" mandatory="?"

readonly="?">?</pws:Priority>
<!--Optional:-->
<pws:Reason type="String" mandatory="?" readonly="?"

?</pws:Reason>
<!--Optional:-->
<pws:RequestingDepartment type="String" mandatory="?"

readonly="?">?</pws:RequestingDepartment>
<!--Optional:-->
<pws:Requestor type="String" mandatory="?" readonly="?">?

</pws:Requestor>
<!--Optional:-->
<pws:Location type="String" mandatory="?" readonly="?">?

</pws:Location>

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 212 of 242



<!--Optional:-->
<pws:HireType type="String" mandatory="?" readonly="?">?

</pws:HireType>
<!--Optional:-->
<pws:attachments>

<!--Zero or more repetitions:-->
<com:attachment href="?" contentId="?" action="?

name="?" type="?" len="attachmentType="?"/>
</pws:attachments>

</pws:instance>
<!--Optional:-->
<pws:messages>

<!--1 or more repetitions:-->
<com:message type="String" mandatory="?" readonly="?"
severity="?" module="?">?</com:message>

</pws:messages>
</pws:model>

</pws:EnableNewEmployeeRequestQuoteRequest>
</soapenv:Body>

</soapenv:Envelope>

HTTP/1.1 401
Set-Cookie: JSESSIONID=94DCC5F90495E0202B84EFB1F998195A;
Path=/sc62server

WWW-Authenticate: Basic realm="CASM"
Connection: close
Content-Type: text/html;charset=utf-8
Content-Length: 40
Date: Wed, 21 May 2008 17:16:05 GMT

Interpreting the http.log

The http.log may contain encoded or compressed messages from the Windows or Web

Client communication. See below to turn off SOAP compression and FastInfoset

encoding. Web Services communications are not encoded nor compressed.

The http.log contains information on all Processes/Threads that connect to the traced

servlets. If more than one Process/Thread is traced, information in the log may overlap

from different sessions, resulting in multiple POST or GET messages together rather

than the POST – GET pair you would expect.

To turn off FastInfoset and compression for the clients, follow these steps:

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 213 of 242



1. On the shortcut starting the Windows client, add –DFastInfoset=false to the target.

2. The command line argument for the Service Manager Windows client is:

-vmargs -option1 -option2

3. As an example, if -DFastInfoset=false is the only command line option ensure your

command line is:

-vmargs -DFastInfoset=false

4. Turn off Compress SOAP Messages on the File - Connect – Connections screen’s

Advanced tab.

5. For the Web client, turn off FastInfoset by setting the JAVA Option -

DFastInfoset=false. As an example, to turn off FastInfoset on Tomcat 5.5 or later,

follow these steps:

a. Go to the Apache Tomcat x.x folder on the Start Menu.

b. Start the Configure Tomcat application.

c. Select the Java tab in the configuration dialog.

6. Turn off the Compress SOAP Messages by editing the ...\WEB-INF\web.xml file.

<!-- Compress network communication between the application
server

and the HP Service Manager server -->
<init-param>

<param-name>compress_soap</param-name>
<param-value>false</param-value>

</init-param>

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 214 of 242



RTM:3 and debugdbquery:999

Sometimes the Web Service itself is working correctly, but actions performed by the

Document Engine within Service Manager are not performing as expected. (Error

Message: soap_serve - Caught XML API exception scxmlapi(19) - Doc Engine call failed

with cc -1)The RTM:3 and debugdbquery:999 parameters can expose such issues that

occur within the application layer of Service Manager. The debugging information

produced by these parameters can be found in the sm.log file in the Service Manager

server RUN directory. It is not necessary to restart Service Manager to activate these

debug parameters. Reconnecting the Web Service to Service Manager triggers the use

of these debug parameters.

The allowwsdlretrieval parameter

This parameter is used to allow retrieval of the WSDL without having the SOAP UI

license.

Error messages

Error Message: soap_serve - Caught XML API exception scxmlapi(19) - Doc Engine

call failed with cc -1

Service Manager publisher:

This error message is issued either when the Document Engine did not attempt to write

the record, because the Process called via extaccess does not perform a save

operation, or if a validation failed and the save could not be performed. To fix this issue,

ensure that the Process called does perform an action that adds or updates a database

record. If it does, add the msglog:1 parameter to the sm.ini and rerun the Web Service.

Check the sm.log file for any validation error messages and then either pass the

required information or change the extaccess record to add any missing required fields

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 215 of 242



to it. If your are still unsure what is the root cause of the issue after this, add RTM:3
and debugdbquery:999 to the sm.ini and retest the Web service operation. If your

are still unsure what is the root cause of the issue after this, add RTM:3 and

debugdbquery:999 to the sm.ini file and retest the Web service operation.

Error Message: Invalid or missing file name in XML request

Service Manager publisher or consumer:

Complete Error Message: <SOAP-ENV:Fault><faultcode>SOAP-

ENV:Server</faultcode><faultstring>scxmlapi(16) - Invalid or missing file name in XML

request</faultstring><detail><appFaultCode>16</appFaultCode><appFaultString>scx

mlapi(16) - Invalid or missing file name in XML

request</appFaultString></detail></SOAP-ENV:Fault>

This error message is issued if the binaries cannot successfully retrieve the name for

the Object to access from the extaccess file. This issue occurs most often when the

Object name is in “CamelCase” notation. To prevent this issue, do not use “CamelCase”

notation (where the name contains compound words or phrases that are joined without

spaces, and each word is capitalized within the name.) in the Object Name in the

extaccess file. As a best practice, use the name of the dbdicts as the Object Name as

well.

If the underlying cause is not the camel case notation, you can modify the SOAP body

by adding filename=”<filename>” to work around this issue. For example:

<soap:Body>

<CreateProblemRequest filename="rootcause"

xmlns="http://<server>:<port>/SM/7">

Error Message: getType() in

com.peregrine.webservice.ComputerInstanceTypeDevice cannot override getType()

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 216 of 242



in com.peregrine.webservice.common.StructureType; attempting to use

incompatible return type

The ConfigurationManagement WSDL is made up of the device extaccess record in

addition to a number of device attribute files (such as computer). The following errors

occur when you set the API Caption for the type field in the device extaccess record to

“type” or “Type” and then attempt to compile the WSDL using Apache Ant:

build_java:
[javac] Compiling 114 source files to C:\Service

Manager\server\webservices\sample\AxisSample\build
[javac] C:\Service

Manager\server\webservices\sample\AxisSample\src\com\
peregrine\webservice\ComputerInstanceTypeDevice.java:225: getType
() in
com.peregrine.webservice.ComputerInstanceTypeDevice cannot
override
getType() in com.peregrine.webservice.common.StructureType;
attempting to
use incompatible return type

[javac] found : com.peregrine.webservice.common.StringType
[javac] required: java.lang.String
[javac] public com.peregrine.webservice.common.StringType
getType() {
[javac]
[javac] 1 error

BUILD FAILED
C:\Service Manager\server\webservices\sample\AxisSample\
build.xml:184: Compile
failed; see the compiler error output for details.

To avoid this or similar errors, make sure that the name is valid and does not conflict

with previously defined names when you set up alias names (“API Captions”). All of the

common.xsd definitions for data types such as StructureType, ArrayType, have a type

attribute, for which Axis manufactures a getType Java method. When it generates a

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 217 of 242



getType method for this new type property/field, those two methods conflict. It does

not matter whether you specify “type” or “Type” because Axis uses camel-case naming

conventions for its generated method names. Whenever an API caption can cause a

conflict with a pre-existing function, change it to be something unique; in this case, for

example, make the API caption CIType.

Failure of the WSDL2JS utility

The WSDL to JS utility executes the SOAP JavaScript record. It reads the provided

WSDL with all incorporated schema definitions and creates or updates a JavaScript

record in the Service Manager ScriptLibrary table with the objects and methods that

can be used for this web service. The generated code can then be called from a custom

written JavaScript to consume the external Web Service. If the code generated by

WSDL2JS is incorrect or incomplete, contact Customer Support for a new unload of the

utility. If the issue is still not solved with the latest version of the WSDL2JS utility, send

the WSDL and all imported / invoked xsd schemas to Customer Support together with

an unload of the generated JavaScript record. It is very important that the location of

the xsd files that are imported or invoked from the WSDL is set correctly, otherwise

the WSDL2JS utility will generate incomplete code.

Caution: Every time the SOAP JavaScript record is changed, all existing Web

Services generated JavaScripts have to be re-generated by re-running the WSDL to

JS utility and all invoking JavaScripts have to be re-compiled.

Testing your WSDL with a SOAP UI

To read the WSDL, go to File > New Project and enter a project name as well as the

initial WSDL location and click on OK. The list of methods will be displayed on the left,

the request is in the middle, the response on the right.

To pass authentication information, enter the Username and Password. If the password

is blank, enter information and then remove the information again.

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 218 of 242



Note: SoapUI fills in each field value with a question mark symbol. For correct

processing, remove these ? before submitting the request.

Running Web Services on a dedicated port

(servlet)

To create a separate servlet within a horizontally or vertically scaled Service Manager

system, add the debugnode parameter to the dedicated servlet container. The

debugnode parameter stops the load balancer from distributing client load to this node.

This can be used to set up a dedicated servlet for tracing and logging without adding an

uncontrollable amount of load to that servlet. Another use is to create a dedicated

servlet for a special purpose within the scaled solution. As an example, refer to the

following sm.cfg file:

#load Balancer Port
sm -loadBalancer -httpPort:13080
#Ports for loadBalanced Connections
sm -httpPort:13081 -httpsPort:13082
sm -httpPort:13083 -httpsPort:13084
sm -httpPort:13085 -httpsPort:13086
#Port for Web Services
sm -httpPort:13087 -debugnode

Current limitations of running Web Services through the load balancer:

l The HTTP 307 redirect is not fully compliant with the specifications which can affect

Web Services integrations through the Service Manager Load Balancer. The

workaround is to connect directly to one of the Service Manager Application server

servlets.

l Web Services through the Service Manager Load Balancer are not possible when SSL

is enabled on the server.

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 219 of 242



l Web Services through the Service Manager Load Balancer are not possible for Web

Services clients that can't handle a redirect.

Troubleshooting a Web service that is behind a

closed firewall

Sometimes it is necessary to troubleshoot a Web Service that is not available. To do so,

we can check whether a WSDL file that is stored on the local machine works using test

data.

Step 1: Test the WSDL2JS

1. Store the WSDL file locally on the server.

2. Start the WSDL to JS utility and enter, file://<fully qualified path to the file>.wsdl

3. Click Proceed.

If the JavaScript file for the Web service is generated without error messages and ends

with:

lib.SOAP.init();
/// End ----------------

… then the WSDL to JS program was able to interpret the WSDL file.

To correctly write the JavaScript functions to call this Web service and generated

JavaScript, check the generated JavaScript for the function you want to use, in this

case:

this.SOAPOperations[ "RetrieveIncident" ]
= new soap_Operation( "RetrieveIncident", "Retrieve","document",

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 220 of 242



"RetrieveIncidentRequest",
"RetrieveIncidentResponse" );

The request can be found within that line and refers to the request function further

down:

function RetrieveIncidentRequest( )
{

this.$$nsPrefix = "ns";
this.$$attributes = new Array();
this.$$xmlNames = new Array();
this.$$objNames = new Array();
this.$$minOccurs = new Array();
this.getName = getName;
this.getXmlName = getXmlName;
this.setContent = setContent;
this.addContent = addContent;
this.getContent = getContent;
this.isFault = isFault;
this.$$elementChildren = new Array();
this.$$name = "RetrieveIncidentRequest";
this.$$xmlNames[ "RetrieveIncidentRequest" ] =

"ns:RetrieveIncidentRequest";
this.attachmentInfo = new Boolean();
this.$$attributes.push( "attachmentInfo" );
this.attachmentData = new Boolean();
this.$$attributes.push( "attachmentData" );
this.ignoreEmptyElements = new Boolean("true");
this.$$attributes.push( "ignoreEmptyElements" );
this.xmlns = new String

("http://servicecenter.peregrine.com/PWS");
this.$$attributes.push( "xmlns" );
this.model = new RetrieveIncidentRequest_IncidentModelType();
this.$$elementChildren.push( "model" );

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 221 of 242



Step 2: Test the request

Once the automatically generated JavaScript code has been saved, write a calling

JavaScript to execute the Web Service. The following is a simple example code for

IncidentManagement record retrieval:

function RetrieveIncident(incident_id)
{

var IncMgmtSvc = new system.library.IncidentManagement.
IncidentManagement();

IncMgmtSvc.user="falcon"

var retrieveReq = new system.library.IncidentManagement.
RetrieveIncidentRequest();

retrieveReq.model.keys.IncidentID.setValue(incident_id);

try
{

var retrieveResp = IncMgmtSvc.invoke(retrieveReq);
if ( retrieveResp.isFault() )
{

throw( "SOAP Fault: " + retrieveResp.
faultstring.getValue() );

}
return retrieveResp.model.instance;

}
catch( err )
{
return( "Error! " + err );

}
}

retVal=RetrieveIncident("IM1001");

print("Testing the result " + retVal.IncidentID.getValue())

1. To test the request, enter debughttp in the sm.ini file and restart the server and

client.

2. If the file http.log exists in the server’s RUN directory, remove it or remove its

contents so that there will be a fresh file to read.

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 222 of 242



3. Go into the calling JavaScript and click Execute. You will most likely get an error

message because the Web service you are trying to reach is not available.

4. After the execution is complete, open the http.log file and search for the

following:

POST /sc62server/ws HTTP/1.1
accept: application/fastinfoset, text/xml, text/html,
image/gif, image/jpeg, *; q=.2, */*; q=.2
authorization: Basic ZmFsY29uOg==
soapaction: Retrieve
connection: Close
content-type: text/xml; charset=utf-8
content-length: 841
cache-control: no-cache
pragma: no-cache
user-agent: Java/1.5.0_08
host: <server>:<port>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/"
xmlns:ns0="http://servername.port_number/SM/7/service_

name.wsdl"
xmlns:ns1="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:ns2="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:ns3="http://servicecenter.peregrine.com/PWS
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"><soap:Body><ns3:RetrieveIncidentRequest

attachmentData=
"false" attachmentInfo="false"
ignoreEmptyElements="true">
<ns3:model><ns3:keys><ns3:IncidentID mandatory="false"
readonly="false" type="String">IM1001</ns3:IncidentID>

</ns3:keys><ns3:instance><ns3:IncidentDescription
type="Array"/><ns3:Resolution type="Array"/>

<ns3:JournalUpdates
type="Array"/>

<ns3:Solution type="Array"/></ns3:instance>

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 223 of 242



</ns3:model>
</ns3:RetrieveIncidentRequest></soap:Body></soap:Envelope>

HTTP/1.1 200
Set-Cookie: JSESSIONID=0405ED23EFF6C9A3874F77796FE4210D;
Path=/sc62server
Connection: close
Connection: close
Content-Type: application/fastinfoset;charset=utf-8
Content-Length: 1323
Date: Wed, 04 Jun 2008 22:09:56 GMT
Connection: close
Connection: closeSet-Cookie: SessionId=16.95.106.150:3487;
Version=1

5. You can copy the bold area into an XML editor such as Altova® XMLSpy® and check

whether it is correct XML. If it is, then the request is deemed to be successful

(which does not necessarily mean that it will return data).

Another method to check the request and response is to run the request through a tool

such as tcpmon. To do so, start tcpmon, enter the server name and port of the

receiving Web service and connect the invoking JavaScript to tcpmon. Both the request

and the response are visible in the tcpmon screen and can be analyzed in an XML editor

as well.

Step 3: Test the response

After the request has been submitted successfully, test the response to the request,

which is written to the http.logfile. Look for the following text. (The section that is

bolded indicates that this is the response message):

SOAP-ENV (http://schemas.xmlsoap.org/soap/envelope/
<Envelope><Body>http://servicecenter.peregrine.com/PWSÏ cmn,
http://servicecenter.peregrine.com/PWS/CommonÏ xsd¬http:
//www.w3.org/2001/XMLSchemaÏ xsi(http://www.w3.org/2001/
XMLSchema-instanceð=‚ RetrieveIncidentResponsex message No

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 224 of 242



more) records foundx returnCode@9x schemaRevisionDate
2008-05-30x schemaRevisionLevel@1x status
FAILURE{„… schemaLocation dhttp://servicecenter.peregrine.
com/PWS http://<server>:<port>/sc62server/ws/Incident.xsdð=‚
model=‚ keys}‚ IncidentIDx typeEStringð’ IM1001ÿ}‚
instancexrecordid IM1001 - x
uniquequery number="IM1001"ðE ‚ð ÿÿÿðà
< #document8ÏSOAP-ENV(http://schemas.xmlsoap.org/soap/
envelope/ð? Envelope? BodyxÍ%http://servicecenter.
peregrine.com/PWSÏ cmn,http://servicecenter.peregrine.com/
PWS/CommonÏ xsd¬http://www.w3.org/2001/XMLSchemaÏ xsi(http://
www.w3.org/2001/XMLSchema-instanceð=‚
RetrieveIncidentResponsex message No (more) records foundx
returnCode@9x schemaRevisionDate 2008-05-30x
schemaRevisionLevel@1x status FAILURE{„… schemaLocation
dhttp://servicecenter.peregrine.com/PWS http://geist8440.
americas.hpqcorp.net:13701/sc62server/ws/Incident.xsdð=‚
model=‚ keys}‚ IncidentIDx typeEStringð’ IM1001ÿ}‚
instancexrecordid IM1001 - x
uniquequery number="IM1001"ðF ‚ð ÿÿÿÿ

HTTP/1.1 200
Keep-Alive: timeout=1200000, max=1000
Connection: Keep-Alive
Pragma: requestnum="185"
Content-Encoding: gzip
Content-Type: application/fastinfoset;charset=utf-8
Transfer-Encoding: chunked
Date: Wed, 04 Jun 2008 22:09:56 GMT

1. Copy the section mentioned above from the http.log file into a text file and assign

it a name such as responsetest.xml. If you used tcpmon to get the information, you

can use the XML response as is. If it came from the http.log, you will need to modify

the special characters in the log to correct XML syntax.

2. Change the calling JavaScript to override the invoke function to read and interpret

the contents of the responsetest.xml file. The following is the section of the code

needed to do that.

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 225 of 242



// Temporarily override the "invoke" function to replace it
with
// a function which reads an XML response from a file
<ServiceObject>.invoke = function( ) {
var resultObj = new Object();
resultObj.responseObj = null;
var resultXML = new XML();
resultXML.setContent( "c:\\<path>\\<responsetest.xml>",
true );
try
{
lib.SOAP.deserialize( "<name of the generated JavaScript>",
resultXML.getDocumentElement(), resultObj );
}
catch( e )
{
print( "Error deserializing response: " + e.toString() );
return null;
}
try
{
this.soapEnvelope = resultObj.soap_Envelope;
this.soapBody = resultObj.soap_Envelope.soap_Body;
if ( this.soapEnvelope.soap_Header != undefined )
{
this.soapHeader = this.soapEnvelope.soap_Header;
}
else
this.soapHeader = null;
return resultObj.soap_Envelope.soap_Body.getContent();
}
catch( e )
{
print( "Error extracting Response Object: " + e.toString() );
return null;
}
}

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 226 of 242



3. Change the line of the calling JavaScript that invokes the Web Service from

<ServiceObject>.invoke to simply invoke to call the invoke function defined within

that calling JavaScript.

4. Click Execute to run this modified JavaScript. If it finishes without errors, the

response is deemed successful.

If any of the above tests fail to complete, contact HP Service Manager Customer

Support and provide the WSDL file, the request and response xml text files with any

error messages, and the sm.log and http.log files with debughttp turned on.

Max sessions exceeded in Web Services

If a Web Services request contains "connection: keep-alive" or it uses HTTP/1.1 without

a connection header, the Service Manager server will keep the session alive for a

predefined interval that is defined by setting the "webservices_sessiontimeout"

parameter in the sm.ini file. If a Web Services client does not reuse the session for

subsequent requests by providing valid headers, the Service Manager server creates a

new session for each subsequent request and quickly run out of available sessions.

To avoid running out of available sessions, there are two options to consider:

Option A: Set the HTTP header "connection:closed" so that the Service Managerserver

will not keep a Web Services session open after the current request is finished.

Option B: Utilize the Web Services session persistence by doing one of the following to

reuse the existing Web Services session on theService Managerserver.

1. Use connection: keep-alive. If the connection header is missing, it

defaults to "keep-alive" for HTTP/1.1.

2. The Web Services client needs to supply a session cookie with the same user log-in

information that created the session.

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 227 of 242



Note: Even with Web Services session persistence, each SOAP API request is

stateless, so that requests are handled independently between one another.

Troubleshooting HTTP socket connections

The HP Service Manager server attempts to keep an HTTP socket connection open as

long as possible, but the protocol requires that it must close if the server returns a

SOAP fault. If there is no successful authentication, it must return a SOAP fault.

Redirected ports

To ensure the client has the correct hostname and port number, a SOAP client

application can direct requests to the TCP port number used by the sm -httpPort

instance, but must be able to recognize SOAP header values in the initial response:

l redirectServerHost

l redirectServerPort

The server returns these SOAP header values identifying the dynamically allocated TCP

host and port number for the spawned process. During the client/server session,

subsequent SOAP requests must be directed to the same hostname and port identified

in the initial response.

TCP ECONNRESETmessages

If a client/server connection using a spawned child thread terminates, the sm -

httpPort child thread receives a TCP ECONNRESET message. The child thread

responds to this by self-terminating to ensure that orphaned child thread does not

collect on the server. However, poorly-designed client applications, or other third-party

SOAP tools, that do not gracefully close a connection could cause the server process to

see a TCP ECONNRESET message, and that also terminates the server thread.

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 228 of 242



Debugging SOAP errors

The best practice for troubleshooting SOAP errors is to start a new client connection

process with a dedicated log file associated with it. Opening a new client connection

process allows you to isolate any faulty client traffic from your regular client traffic.

1. To set up your system to debug SOAP traffic, do one of the following:

l Start HTTP debugging for the entire system. Type the following command on a single

line in the sm.ini file and then save the file.

debughttp:1

Debug parameters in the sm.ini file affect all Service Manager processes and the

log files record all send/receive messages. This method is not recommended for a

busy server however, since you have to restart the server for the debugging

parameter to take effect.

l Start a separate client connection process to troubleshoot your SOAP errors. Type

the following command in the operating system command line:

sm -httpPort:unique portnumber -sslConnector:0 -

debughttp:1

-log:../logs/debug.log

where

-httpPort identifies a port where Web Services clients can connect

-log defines a path to store the logs for this process

Normally, all client connection processes for a particular Service Manager

installation use the parameter values listed in the sm.ini file. This means that all

client connections share the same log file specified in the sm.ini file. By starting a

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 229 of 242



new client connection process with a different log parameter value, you can isolate

the logs for a particular group of clients. Choose a port number that is not likely to

be used by any other process.

2. Recreate the error.

3. Review the http.log, sm.log and log files from the Web Services consumer or

publisher that Service Manager is communicating with and server, and client log

files for information about the SOAP error. The HTTP log is in the server's RUN

folder. The server logs are in the path you specified with the log parameter. The

client logs are located in the following paths:

l For a Web Services client, see your Web Services client log

l For a Web client, see the log filed specified in the log.properties file on the

web tier system

l For a Windows client, see the .log on the Windows client system

SOAPmessages: Debugging HTTP traffic problems

If, after reviewing the client logs, you discover that there is an error in the HTTP

transfer of SOAP messages, you must manually enable the HTTP debugging option on

the Service Manager server. This option allows you to trace all HTTP and SOAP

messages between the Service Manager server and client. You can trace HTTP traffic in

one of two ways.

l Trace all HTTP connections to the server

l Trace a dedicated connection to the server

To review all the HTTP traffic, you can enable the debughttp parameter from the

Service Manager initialization file (sm.ini) file. This causes the server to record all

messages sent from and to the server to the following log files.

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 230 of 242



l logs\sm.log

l RUN\TEST.log

This method of debugging SOAP messages traces all Service Manager processes, but

significantly reduces system performance because the log files the server produces

contain all HTTP traffic, including HTTP headers and attachments. For this reason it is

recommended that you not enable this parameter on production systems, but rather in

test environments only.

To review HTTP traffic use the -httpPort paremeter as in the sample below. In addition,

you can create a dedicated log file for this connection. By starting a new Service

Manager process and specifying a separate log parameter, you reduce the amount of

system resources needed to produce debugging output. For example, you can enter the

following command from the server OS command line to create a dedicated servlet and

log file.

sm -httpPort:portnumber -debughttp:1 -log:../logs/debug.log

For portnumber, type a communications port number on which you want the server to

use for SOAP requests. You can use the -log parameter to define a path to any log file

you want.

SOAPmessages: Debugging problems with RAD

applications

If your review of the client logs reveals potential problems in the RAD applications, you

can enable the logging of RAD application messages by adding the rtm startup

parameter to the Service Manager initialization file. This parameter causes the server

to record all application-generated messages to sm.log file. For example, to receive

detailed information about the RAD applications, add the following command to the

Service Manager initialization file (sm.ini).

rtm:3

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 231 of 242



You can use the RAD application logging messages to determine if any tailoring changes

you made are the cause of SOAP faults.

Web Services client unable to connect

The most common error occurs when your Web Services client application fails to

obtain a response, or you receive this error message:

Server Error in <name> Application

The underlying connection was closed: Unable to connect to

the remote server

The Web Services client may be directing SOAP requests to the wrong host or to the

wrong TCP port number. HP Service Manager generates WSDL files that contain the

hostname and TCP port number for the Service Manager server instance receiving the

request. The Web Services client application may use the hostname and port number

used during application development, but the production hostname and port might be

different each time the application runs if they are dynamically allocated.

If the server instance generating the WSDL is different from the hostname or port

number receiving the client application requests, the client/server connection will fail.

Follow these rules to ensure successful client/server SOAP communication.

l Ensure that your Web Services request is not running against a common port with

heavy server traffic. Otherwise, tracking request and response messages will be

difficult.

l Type the following at the command line to generate debug logs:

sm -httpPort:unique portnumber -sslConnector:0 -

debughttp:1 -log:../logs/debug.log

where

-httpPort identifies a dedicated port for Web Service client connections

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 232 of 242



-log defines a path to store the logs for this connection.

Note: It is easier to troubleshoot errors if each SOAP client application connects

to its own TCP port number.

l Examine the HTTP.LOG file for response messages. You can use this information to

determine where a Web Service client connection failure occurs.

Calling external web services with SSL fails after

JRE 7 upgrade

Calling external web services with SSL encryption from Service Manager fails after

binary upgrade including JRE upgrade to version 1.7.0.

The sm.log contains an exception like this:

JRTE E java.security.PrivilegedActionException:
com.sun.xml.messaging.saaj.SOAPExceptionImpl: Message send failed
RTE E Error calling method: doSoapRequest in class:
com/hp/ov/sm/server/utility/SoapClient Exception
(com.sun.xml.messaging.saaj.SOAPExceptionImpl:
java.security.PrivilegedActionException:
com.sun.xml.messaging.saaj.SOAPExceptionImpl: Message send
failed)
RTE E SCException caught in soapRequest(): Error calling method:
doSoapRequest in class: com/hp/ov/sm/server/utility/SoapClient
Exception (com.sun.xml.messaging.saaj.SOAPExceptionImpl:
java.security.PrivilegedActionException:
com.sun.xml.messaging.saaj.SOAPExceptionImpl: Message send
failed)
RAD E Error calling method: doSoapRequest in class:
com/hp/ov/sm/server/utility/SoapClient Exception
(com.sun.xml.messaging.saaj.SOAPExceptionImpl:
java.security.PrivilegedActionException:

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 233 of 242



com.sun.xml.messaging.saaj.SOAPExceptionImpl: Message send
failed)

Additionally, a sm_<process identifier>_stdouterr.log was created. The relevant stack

trace is:

Caused by: javax.net.ssl.SSLException: Received fatal alert:
unexpected_message

at com.ibm.jsse2.j.a(j.java:21)
at com.ibm.jsse2.j.a(j.java:32)
at com.ibm.jsse2.qc.b(qc.java:5)
at com.ibm.jsse2.qc.a(qc.java:645)
at com.ibm.jsse2.qc.h(qc.java:809)
at com.ibm.jsse2.qc.a(qc.java:106)
at com.ibm.jsse2.qc.startHandshake(qc.java:586)
at com.ibm.net.ssl.www2.protocol.https.c.afterConnect

(c.java:15)
at com.ibm.net.ssl.www2.protocol.https.d.connect

(d.java:39)
at

sun.net.www.protocol.http.HttpURLConnection.getOutputStream
(HttpURLConnection.java:1090
<http://www.protocol.http.httpurlconnection.getoutputstream
(httpurlconnection.java:1090/> )

at com.ibm.net.ssl.www2.protocol.https.b.getOutputStream
(b.java:33)

at
com.sun.xml.messaging.saaj.client.p2p.HttpSOAPConnection.post
(HttpSOAPConnection.java:323)

Cause:

The remote endpoint is not supporting Server Name Indication (SNI), which is by default

activated in Java 7. The issue is related to the remote endpoint (in this case, the web

services server), and whether it supports SNI extensions during the SSL handshake or

not. Once Service Manager is upgraded to use Java 7, it starts to use SNI extensions

during the SSL handshake. If the remote endpoint does not, the web service will fail

with the error message provided above.

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 234 of 242



Solution:

Activate SNI at the remote endpoint. This is the recommended solution.

Workaround:

If the remote endpoint does not support SNI extensions, and SNI cannot be activated,

add the following JVMOption<n> parameter either to the sm.ini file, or to the start

command of the servlet(s) in the sm.cfg file:

JVMOption2:-Djsse.enableSNIExtension=false

This will disable a security feature SNI in Java 7.

Troubleshooting RESTful API
This section lists common issues of RESTful API and describes the methods to

troubleshoot.

Debugging

The following three parameters are most frequently used for debugging RESTful API:

l debugrest

l dao_threadsperprocess

l dao_sessiontimeout

It is also useful to use the msglog:1 parameter to have all messages written to the

sm.log as well.

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 235 of 242



The debugrest parameter

Add the debugrest in sm.ini or in the dedicated servlet container line of the sm.cfg file,

restart the Service Manager and re-run the RESTful Web service application to invoke

debugging parameter. It provides more detailed log trace for diagnostics.

The dao_threadsperprocess parameter

Similar to debugrest, it can be set in sm.ini or in the dedicated servlet container line of

sm.cfg file

It means the maximum number of threads allowed concurrently running in the process

for RESTful Web Service application. It can be defined in sm.ini and the default value is

10. It is better to start enough server threads to handle requests (suggest to

maintaining the buffer of 30%~ 40% spare capacities).

The dao_sessiontimeout parameter

Like debugrest, the dao_sessiontimeout parameter can be set in sm.ini or in the

dedicated servlet container line of sm.cfg file.

It indicates the seconds to wait before terminate the RESTful threads. It can be defined

in sm.ini and the default value is 15 seconds. Unless the client sends subsequent

requests within the timeout, the Service Manager server will recycle the session for re-

use and re-allocate it on demand.

If there is big divergence, it is recommended to connect several servlets with different

thresholds.

Web Services Guide

Troubleshooting

HP Service Manager (9.40 Codeless) Page 236 of 242



Syntax for entity references in xml
Character represented Entity Reference xml code

> greater than &gt;

< less than &lt;

“ Quotation marks &quot;

& ampersand &amp;

‘ apostrophy &apos;

HP Service Manager (9.40 Codeless) Page 237 of 242



Definitions, acronyms, and abbreviations

Term Definition

Consuming Using a Web Service by calling its methods, supplying the appropriate
calling parameters

Publishing Providing a service over the Web by making public the services
operations and objects in a Web Service.

WSDL Web Services Description Language, which is a standard, structured way
of describing SOAP messages and Web Services

REST Representational State Transfer.

HP Service Manager (9.40 Codeless) Page 238 of 242



Web Services resources
You can use the following resources to develop and publish your own Web Services.

The World Wide Web Consortium (W3C) has existed for almost ten years. Its objective is

to develop common protocols and to recommend standards that promote Internet

interoperability. There are over 400 member organizations who contribute to forming

recommendations for standards and best practices among Internet developers. The

W3C provides leadership in an array of Web technologies (including XML, HTML, and

similar areas of interest) by creating working groups that gather and publish

information and recommendations.

You can find the WSDL schema and SOAP schemas published and propagated by IBM and

Microsoft at schemas.xmlsoap.org. The W3C has complete descriptions of the schema

elements for both SOAP and WSDL. See the W3C Web site for the most recent working

draft of SOAP and WSDL recommendations.

There are third party tool kits that simplify creating a Web Service. For example,

Apache Axis and Microsoft Visual Studio .NET are development tool kits you can use to

create a custom Web Services client directly from the Service Manager Web Services

API WSDL.

If you are interested in examples of working Web service WSDL files, programmatic

interfaces, tutorials, samples, and a list of available Web services, see the Xmethods

Web site. Also see the resources listed below:

l Service-Oriented Architecture : A Field Guide to Integrating XML and Web Services,

April 2004, Prentice Hall Publishing

l Web Services: A Technical Introduction, August 2004, Prentice Hall Publishing

l Java Web Services, March 2004, O’Reilly

l Apache Axis

HP Service Manager (9.40 Codeless) Page 239 of 242

http://ws.apache.org/axis/


l Microsoft Visual Studio .NET

l schemas.xmlsoap.org

l SOAP schemas

l World Wide Web Consortium

l Gzip Web site

l Apache Wink

l Representational state transfer

l Hypertext Transfer Protocol

Web Services Guide

Web Services resources

HP Service Manager (9.40 Codeless) Page 240 of 242

http://msdn.microsoft.com/vstudio/
http://schemas.xmlsoap.org/wsdl/
http://schemas.xmlsoap.org/wsdl/soap/
http://www.w3.org/
http://www.gzip.org/
http://wink.apache.org/
http://en.wikipedia.org/wiki/REST
http://www.w3.org/Protocols/rfc2616/rfc2616.html


Send Documentation Feedback
If you have comments about this document, you can contact the documentation team

by email. If an email client is configured on this system, click the link above and an

email window opens with the following information in the subject line:

Feedback on Web Services Guide (Service Manager 9.40 Codeless)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web

mail client, and send your feedback to ovdoc-ITSM@hp.com.

We appreciate your feedback!

HP Service Manager (9.40 Codeless) Page 241 of 242

mailto:ovdoc-ITSM@hp.com?subject=Feedback on Web Services Guide (Service Manager 9.40 Codeless)



	Service Manager Web Services
	Introduction to the Web Service guide
	What is a Web Service?
	Understanding the Service Manager Web Services
	Web Services basics
	Adding or changing Web Services

	Introduction to Web Services in Service Manager
	Web Services and Service Manager
	Web Services naming conventions for SOAP
	Web Services security considerations
	Valid URLs for Service Manager
	Service Manager Web Services URLs
	Configure the Web Service field definitions
	Allowed Actions tab field definitions
	Expressions tab field definitions
	Fields tab definitions
	RESTful tab field definitions



	Publishing Service Manager data using WS API
	Things to consider prior to publishing data
	Publishing Service Manager applications as Web Services
	When to use Web Services
	Can I use the out-of-box Web Services?
	What items do I need to expose?
	Publish a Document Engine display action in the Web Services API
	Publish a Service Manager field in the Web Services API

	What data types should I use for SOAP?
	What methods do I need?
	Managing records with Web Services requests
	Create only
	Update only
	Merge

	Are there any security considerations?
	What are released Web Services?
	Enable SSL encryption for published Web Services

	List: Web Services available in the Service Manager Web Services API
	Field names in the extaccess record
	Create dedicated Web Services listeners
	Data conversion between Service Manager and SOAP Web Services
	Example: Publishing the Terminate Change functionality via Web Services
	Create a display option
	Create a new process
	Set up a State record
	Set up an extaccess record
	Execute a request via SOAP Web Services
	Response to a request via SOAP Web Services
	Execute a request via RESTful Web Services
	Response to a request via RESTful Web Services

	Publish a table as a Web service
	Expose a table with more than one Web service
	Remove a Document Engine display action from a Web service
	Remove a Service Manager field from a Web service
	Sample client for SOAP Web Services SM7 URL
	Command line arguments for the Axis2 sample application
	Add an external access action to the Web Services

	SOAP API
	Web Services Description Language (WSDL)
	Basic operations in WSDL files
	Service Manager WSDL files
	Types of Web Services in Service Manager
	WSDL document structure
	XML header
	Namespace definitions
	Operation section
	Messages section
	Types section
	Nillable attribute

	Port type
	Binding section
	Service section
	Port section

	Change example to use the cookie
	Verify the WSDL to JS output
	Example using Keep-Alive with .Net Web Services Studio
	First execution of .Net Web Services Studio
	Second execution of .Net Web Services Studio


	Consuming a Service Manager Web Service
	Dynamic and static Web Services clients
	What happens if an exposed table is changed?

	Updating Service Manager tables
	Requirements for developing custom Web Services clients
	Checklist: Creating a custom Web Services client
	Technical support for custom Web Services clients

	Sample Web Services client for sc62server PWS URL
	Command line arguments for the .NET samples
	Command line arguments for the Axis sample application
	Configuration Management
	Incident Management

	Using query syntax
	The request
	The response

	Retrieving data from Service Manager
	Example: Retreiving data from Service Manager via a Web service
	The request
	The response

	Retrieve data from Service Manager using Pagination
	Example: Use Web Service with pagination to retrieve data from Service Manager
	Request with pagination
	Response with pagination
	Next pagination request
	Next pagination response

	Retrieve data from Service Manager for Optimistic Locking
	Request with updatecounter
	Response with updatecounter

	Web Services examples in the RUN directory
	Example: Retrieving Service Manager Release Management changes into a text fi...
	Example: Getting change information from another Service Manager system
	Example to close an existing incident record

	Special considerations for using Keep-Alive with Service Manager
	Keep-Alive example for Service Manager

	Use SSL to consume Service Manager Web Services
	Attachment handling
	Service Manager allows requests with no href or content-id
	Sample script to send a record with attachments within Service Manager


	Consume an external Web Service
	Use the WSDL2JS utility
	Best practices for writing a JavaScript to consume a Web service
	Date/Time handling
	Example: Interface to another system
	Generated JavaScript interfaces
	Create a request for a new project
	The structure of the request
	Request object
	Simple fields
	Check the xs_string() function
	Check expected parameters in invoke() function
	Check the syntax for the Response function
	Use getValue
	Write the invoking JavaScript code
	Determine the structure of the request and response
	PPM request
	PPM response

	Web Services with a proxy server
	Connecting to a secure Web service
	Use SSL connections to connect to an external Web service
	Web Services connections through a firewall


	RESTful API
	Service Document
	Consuming Service Manager RESTful API
	RESTful Syntax
	Resource Types

	RESTful Authentication
	RESTful Commands
	RESTful Queries
	Resource Representations
	Media Types for an Individual Resource
	Resource Collection Media Types
	Media Types for an individual attachment
	Resource Collection Media Types

	Enable a Resource for REST
	RESTful Capability Word
	HTTP Header
	HTTP Response Codes
	See Also

	OOB Resource Reference Example
	Web Service: Incident



	Troubleshooting
	Understanding the return codes provided by Web Services
	Example of a failure return code and message
	Detailed return codes from Document Engine

	Troubleshooting SOAP API
	Debugging
	The debughttp parameter
	Interpreting the http.log
	RTM:3 and debugdbquery:999
	The allowwsdlretrieval parameter

	Error messages
	Failure of the WSDL2JS utility
	Testing your WSDL with a SOAP UI
	Running Web Services on a dedicated port (servlet)
	Troubleshooting a Web service that is behind a closed firewall
	Step 1: Test the WSDL2JS
	Step 2: Test the request
	Step 3: Test the response

	Max sessions exceeded in Web Services
	Troubleshooting HTTP socket connections
	Redirected ports
	TCP ECONNRESET messages

	Debugging SOAP errors
	SOAP messages: Debugging HTTP traffic problems
	SOAP messages: Debugging problems with RAD applications

	Web Services client unable to connect
	Calling external web services with SSL fails after JRE 7 upgrade

	Troubleshooting RESTful API
	Debugging
	The debugrest parameter
	The dao_threadsperprocess parameter
	The dao_sessiontimeout parameter



	Syntax for entity references in xml
	Definitions, acronyms, and abbreviations
	Web Services resources
	Send Documentation Feedback

